

Watermarking of Polygonal Lines

V. R. Doncel, N. Nikolaidis and I. Pitas

Department of Informatics Aristotle University of Thessaloniki GREECE

e-mail: {victor,nikos,pitas}@zeus.csd.auth.gr

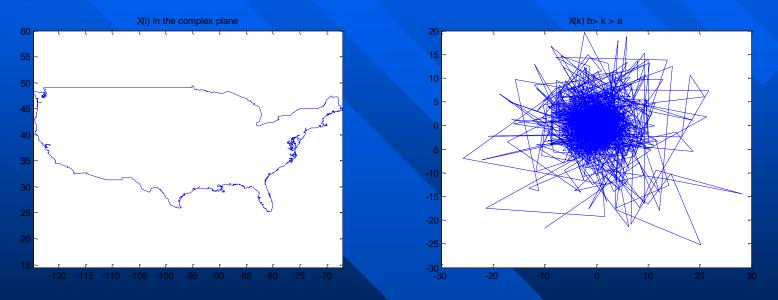
VISNET Thessaloniki 25 June 2004

Introduction

> Polygonal line: sequence of vertices defining a polygon

Polygonal lines in: GIS data, cartoons, segmented images (from video), CAD, general vectorial graphics

Robust watermark system using Fourier descriptors



Watermark Embedding: 1

Fourier descriptors: Fourier coefficients of the polygon considered as a function in the complex plane

> Sample: 1. USA 2. USA in the Fourier domain

Watermark Embedding: 2

Watermark:

- Spread spectrum techniques
- > W(k) A pseudorandom signal, generated with an integer key
- > W(k) takes values of ± 1 randomly, N length
- > Watermark is multiplicative: |X'(k)| = |X(k)| (1+pW(k))
- > Watermark is only embedded in medium frequencies

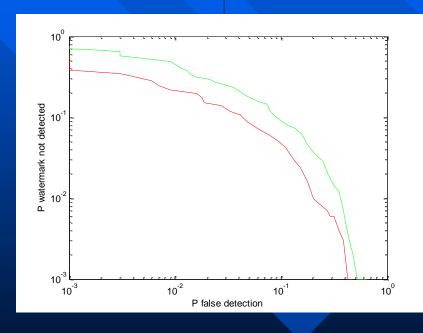
Watermark Detection: Correlator

- > Correlation is calculated: $C=\Sigma |X'(k)|W(k)$
- Random variable with 0 mean if no key or wrong key provided
- Compared against a threshold
- > For big N, it performs well (central limit theorem applies)

Watermark Detection: Optimal

Signal Im and Re parts considered to be independent gaussian processes: Modulus amplitudes follows a Rayleigh distribution

Every sample is expected to have a value according to the watermark for that point, different if watermark not present.

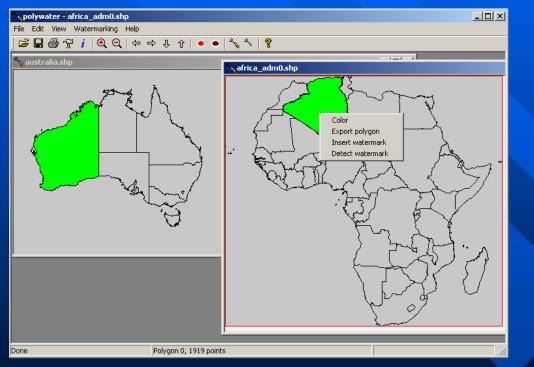

> Likelihood for every sample is considered.

Better results than the correlator, but slower

Watermark Detection: Comparison Correlator is faster but has higher error probability Example for a very small embedding power (0.1) In the ROC shown, correlator in green, optimal in red

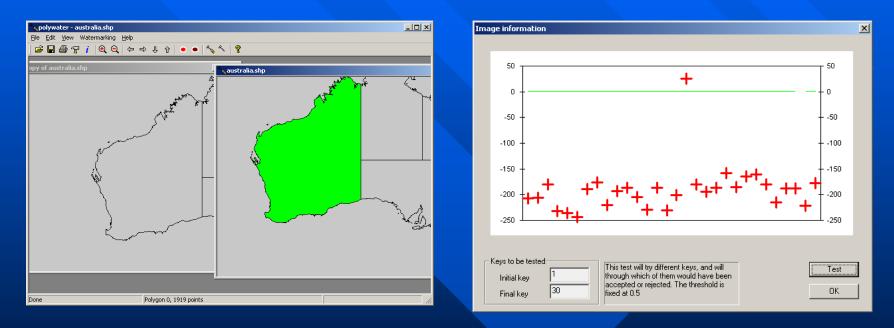
Watermark Detection: Improvements

Non-idealities happen in real life data.


Variance is not stationary along the spectrum. Improvements have to be done in the variance estimation.

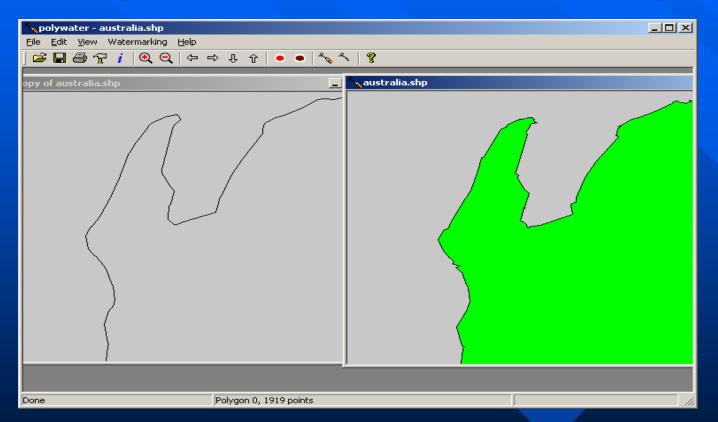
Practical work: PolyWater

Reads ESRI's shapefile format GIS data
 Extracts polygons and applies/read watermarks


Watermark insertion		×
Password		OK Cancel [Advanced <<]
Parameters Power 0.020 a param 0.200	Detector Binary detector	×
b param 0.400		

Practical work: sample

1. Original and watermarked polygon: very small difference 2. Rigth vs. wrong keys test: clear detection



Practical work: sample (2)

> 1. Slight differences are visible when zooming in.

Conclusion

Watermark for polygons robust against attacks
 Good performance for N > 1000 points
 When multiple contours, fusion techniques have to be developed to avoid mismatching between borders