
Citation: Zichichi, M.; Ferretti, S.;

Rodríguez-Doncel, V. Decentralized

Personal Data Marketplaces: How

Participation in a DAO Can Support

the Production of Citizen-Generated

Data. Sensors 2022, 22, 6260.

https://doi.org/10.3390/s22166260

Academic Editors: Pietro Manzoni,

Claudio Palazzi and Ombretta Gaggi

Received: 25 May 2022

Accepted: 16 August 2022

Published: 20 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Decentralized Personal Data Marketplaces: How
Participation in a DAO Can Support the Production of
Citizen-Generated Data
Mirko Zichichi 1,* , Stefano Ferretti 2 and Víctor Rodríguez-Doncel 1

1 Ontology Engineering Group, Universidad Politécnica de Madrid, 28040 Madrid, Spain
2 Department of Pure and Applied Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
* Correspondence: mirko.zichichi@upm.es; Tel.: +34-910-672-914

Abstract: Big Tech companies operating in a data-driven economy offer services that rely on their
users’ personal data and usually store this personal information in “data silos” that prevent trans-
parency about their use and opportunities for data sharing for public interest. In this paper, we present
a solution that promotes the development of decentralized personal data marketplaces, exploiting the
use of Distributed Ledger Technologies (DLTs), Decentralized File Storages (DFS) and smart contracts
for storing personal data and managing access control in a decentralized way. Moreover, we focus on
the issue of a lack of efficient decentralized mechanisms in DLTs and DFSs for querying a certain type
of data. For this reason, we propose the use of a hypercube-structured Distributed Hash Table (DHT)
on top of DLTs, organized for efficient processing of multiple keyword-based queries on the ledger
data. We test our approach with the implementation of a use case regarding the creation of citizen-
generated data based on direct participation and the involvement of a Decentralized Autonomous
Organization (DAO). The performance evaluation demonstrates the viability of our approach for
decentralized data searches, distributed authorization mechanisms and smart contract exploitation.

Keywords: distributed ledger technology; decentralized file storage; distributed hash table; data
marketplace; keyword-based search; citizen-generated data

1. Introduction

Recent scandals have shown the harm that current data collection, storage and sharing
practices can cause with regard to the misuse of personal data [1,2]. As the world is
becoming more “smart”, so-called smart environments, of which smart cities [3] stand out
the most, have in common the ability to transform data (in particular, personal data) into
meaningful information needed by the liveness of the ecosystem they generate. Based
on this transformation, indeed, they provide services that are becoming more and more
targeted towards individuals. For instance, it is commonly known that personal information
is used to recommend opportunities to individuals and to make their life easier. However,
entities that control these data might not always operate with the aim of social good [4].
Many Big Tech companies rely on data collected about their users, usually storing this
personal information in corporate databases, i.e., data silos, and transacting it to third
parties with not enough transparency for individuals.

Meanwhile, among the many technologies used for general-purpose data manage-
ment and storage, Distributed Ledger Technologies (DLTs) are rising up as powerful tools
for avoiding control centralization. DLT and the realm of decentralized systems, such
as Decentralized File Storages (DFS), that are emerging as solutions able to tackle the
issue of obtaining large amounts of data that are not of dubious or of false origin, while
providing more disintermediated processes [5,6]. DLTs, in this context, provide a new way
of handling personal data, such as recording, storage and transfer. This can be carried
out in combination with cryptographic schemes to ensure data confidentiality. By their

Sensors 2022, 22, 6260. https://doi.org/10.3390/s22166260 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22166260
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4159-4269
https://orcid.org/0000-0002-1911-4708
https://orcid.org/0000-0003-1076-2511
https://doi.org/10.3390/s22166260
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22166260?type=check_update&version=1


Sensors 2022, 22, 6260 2 of 31

decentralized nature, indeed, these technologies have the potential to make processes more
democratic, transparent and efficient [7]. DLTs and DFS can support the creation of a Per-
sonal Information Management System (PIMS) based on decentralized data processing and
Personal Data Stores (PDS) [8,9]. In PIMS, data access is granted in line with user policies
and these ones, in a decentralized scenario, can be determined by the user via DLTs and
smart contracts [8]. PIMS have been proposed by scholars [9–11] or companies [12] and are
increasingly gaining attention from policymakers who currently consider mechanisms for
regulating and advancing data intermediation services in general [7,8,13,14]. In the context
of the European Union’s General Data Protection Regulation (GDPR) [15], PIMSs enforce
the right of individuals to know the data collected about them and the right to transfer data
to other service providers, i.e., data portability. Such features enable the process of moving
the data sovereignty towards users, i.e., Self-Sovereign Identity [16], and of providing
them more influence over access control, while allowing anyone else to be able to consume
this data with transparency. All of this paves the way towards the use of personal data
for open data markets and for social good. The ability to easily obtain personal data has
the potential to create a marketplace where users are consumers and providers at the
same time. By creating a common, decentralized and trustless infrastructure, such as a
decentralized personal data marketplace, it will be possible for data owners and consumers
to interact and collaborate in Peer-to-Peer (P2P) transactions [17,18]. This means facilitating
the transactions of data between owners and consumers without the need for a trusted
third-party broker, enabling liquid data markets [19].

The underlying research questions we aim to explore in this work are as follows:

i Are decentralized personal data marketplaces able to optimally support individuals’
personal data protection and portability?

ii How can decentralized technologies foster a convergence between the protection of
individuals’ personal data and the development of data aggregation solutions?

Contributions

The contributions of this work include the description of a high-level solution for
a decentralized personal data marketplace involving the use of DLTs, DFS and smart
contracts for the creation of a PIMS: (i) data owners store their personal data in PDSs
implemented using a DFS, such as the InterPlanetary File System (IPFS) [20]; (ii) this stor-
age is complemented by the use of a DLT, which enables data integrity validation and
indexing of the data, i.e., the IOTA DLT [21]; (iii) a distributed authorization mechanism
enables access control of this data, thanks to the decentralized execution of immutable
instructions of smart contracts implemented using the Ethereum protocol [22]; our autho-
rization blockchain network executes access control to enact data owners’ preferences and
to verify the authenticity of the claims; the nodes of such a network employ a cryptographic
schema that enables the protection of data owner’s personal data (i.e., based on the use
of a Threshold Proxy Re-Encryption [23]); (iv) finally, we provide a system for the search
for data according to their content or meaning, relying on the use of a Distributed Hash
Table (DHT) as a layer placed over the DLTs; indeed, data inserted into the DLTs and DFS
is usually unstructured and no efficient decentralized mechanisms are present to query a
certain kind of data; in our solution, data stored in DLT can be searched in a decentralized
way through keywords stored in the DHT; the distinctive feature of our DHT network is
that it is essentially a hypercube overlay structure [24], in which each node indexes objects
representing specific indexes and addresses of a DLT using keywords.

Moreover, in this paper, we address a use case that assists us in describing the imple-
mentation of the decentralized personal data marketplace. Since our main driving force
is facilitating the use of private data for the social good, we present a use case where
citizens can use and give access to their personal data to produce new data, creating value
for governments, businesses and other citizens as well. Through practices that promote
a collaborative and co-creative approach to working together on the management, con-
trol and governance of the use of data, people and society can influence and shape data



Sensors 2022, 22, 6260 3 of 31

governance processes and can support greater social and economic equity [2,25]. By imple-
menting this use case, we demonstrate the ability of our system to support these processes.
In particular, our system allows citizens to take part in an organization for the creation
of new datasets and to steer the developmental decisions through a Decentralized Au-
tonomous Organization (DAO) [26]. Our system provides the elements of a framework
for participatory data stewardship [2], being transparent, i.e., informing individuals about
their data, and collaboration, i.e., enabling individuals to take action [25], at its core.

The original contributions and novelties of our work are summarized as follows:

i First, we provide a description of the implementation of a decentralized personal data
marketplace, where

• Our PDS is implemented using a DFS for storing personal data;
• We use a DLT for providing data integrity, validation and indexing;
• Our smart contract-based authorization system executes distributed data access

control;
• Our hypercube DHT enables a decentralized way of searching for data in DLTs.

In particular, we provide a detailed description of the protocols behind the authoriza-
tion blockchain and the hypercube DHT.

ii Second, we provide the implementation of a use case for the architecture through
the description of citizen-generated data creation based on direct participation. This
consists of the development of a data aggregation solution through the use of a DAO,
where members are citizens.

iii Third, we evaluate the implementation’s performance by means of an experimental
evaluation. More specifically, (i) we simulate a P2P network executing the hypercube
DHT for decentralized search of data, (ii) we test the distributed data access control
execution for the use case and (iii) we evaluate the smart contract implementation in
terms of gas usage.

The remainder of the paper is organized as follows: Section 2 provides a background on
the main concepts and technologies used, while Section 3 focuses on related work. Section 4
presents a description of the decentralized personal data marketplace architecture. Section 5
provides the description of a citizen-generated data creation use case with the intent to
present our marketplace implementation. In Section 6, the evaluation of our proposal is
shown and the results are discussed. Finally, Section 7 provides the concluding remarks.

2. Background

In this section, we introduce the main concepts and technologies involved in our work.

2.1. Distributed Hash Table (DHT)

A Distributed Hash Table (DHT) is a distributed infrastructure and storage system that
provides the functionalities of a hash table, i.e., a data structure that efficiently maps “keys”
into “values”. It consists of a P2P network of nodes that are supplied with the table data
and on a routing mechanism that allows for searching for objects in the network [24]. Each
node in the DHT network is responsible for part of the entire system’s keys and allows the
objects mapped to the keys to be reached. In addition, each node stores a partial view of the
entire network, with which it communicates for routing information. To reach nodes from
one part of the network to another, a routing procedure typically traverses several nodes,
approaching the destination at each hop. This type of infrastructure has been used as a key
element to implement complex and decentralized services, such as Content-Addressable
Networks (CANs) [27], Decentralized File Storage (DFS) [20], cooperative web caching,
multicast and domain name services.

2.2. Decentralized File Storage (DFS)

Decentralized File Storage (DFS) is a solution for storing files as in Cloud Storage [28]
but retaining the benefits of decentralization [9]. They offer higher data availability and



Sensors 2022, 22, 6260 4 of 31

resilience thanks to data replication. A DFS comprises a P2P network of nodes that provide
storage and follow the same protocol for content storing and retrieval. In content-based
addressing, contents are directly queried through the network rather than establishing a
connection with a server. In order to know which DFS node in the network owns the re-
quested contents, it is possible to rely on a DHT in charge of mapping the contents, i.e., files
and directories, to the addresses of the peers owning such data. A principal example of DFS
is the InterPlanetary File System (IPFS) [20], a protocol that builds a distributed file system
over a P2P network. IPFS is a DFS and a protocol created for distributed environments
with a focus on data resilience. The IPFS P2P network stores and shares files and directories
in the form of IPFS objects that are identified by a CID (Content Identifier). The CID acts
as an immutable universal identifier used to retrieve an object in the network. Only the
file digest is needed, i.e., the result of a hash function applied on the data. Users that want
to locate that object use this identifier as a handle. When an IPFS object is shared in the
network, it is identified by the CID retrieved from the object hash, for instance a directory
with a CID equal to QmbWqxBEKC3P8tqsKc98xmWNzrzDtRLMiMPL8wBuTGsMnR. Even if
other nodes in the network try to share the same exact directory, the CID will always be
the same.

2.3. Distributed Ledger Technology (DLT)

Distributed Ledger Technologies (DLTs) consist of networks of nodes that maintain
a single ledger and follow the same protocol, including a consensus mechanism, for ap-
pending information to it. The blockchain is a type of DLT where the ledger is organized
into blocks and where each block is sequentially linked to the previous one. The execution
of the same protocol, i.e., source code, guarantees (most of the time) the property of being
tamper-proof and not forgeable. This allows for a trust mechanism to be created without
the need for third-party intermediaries [29,30].

There are different implementations of DLTs, each one with its pros and cons. In
permissionless ones, anyone can take part in the consensus mechanism, while this is not
true in permissioned ones. Another distinction lies in the support of smart contracts,
e.g., Ethereum [22]. This feature is quite often in contrast with other key features related
to the level of scalability and responsiveness of the system [31]. Conversely, some imple-
mentations are thought to provide better scalability at the expense of lacking some features.
IOTA [21], for instance, implements a more scalable solution for distributing the ledger. It
consists of a Layer-1 solution, while, on the other hand, Layer-2 solutions are technologies
that operate on top of an underlying DLT to improve its scalability [32].

2.4. Smart Contract and Decentralized Autonomous Organization (DAO)

A smart contract is a new paradigm of contracts that does not completely embody the
same features of a legal contract but can act as a self-managed structure able to execute code
that forces agreements between two or more parts. A smart contract consists of instructions
that, once distributed on the ledger, cannot be altered. Thus, the result of its execution will
always be the same for all DLT nodes running the same protocol. When a smart contract
is deployed on the DLT and the issuer is confident that the code embodies the intended
and proper behavior (e.g., by reviewing the code), then transactions originating from that
contract do not require the presence of a third party to have value [33].

Smart contracts are fundamental components of Ethereum that reside on the blockchain
and are triggered by specific transactions [34]. Moreover, smart contracts can communi-
cate with other contracts and even create new ones. The use of these contracts grants
permission to build Decentralized Applications (dApps) and Decentralized Autonomous
Organizations (DAOs) [6,32,35–37]. A DAO is a virtual entity managed by a set of in-
terconnected smart contracts, where various actors maintain the organization state by a
consensus system and are able to implement transactions, currency flows, rules and rights
within the organization. Members of a DAO are able to propose options for decisions in the
organization and to discuss about and vote on those through transparent mechanisms [26].



Sensors 2022, 22, 6260 5 of 31

2.5. IOTA and Streams

In this work, we specifically refer to the IOTA DLT as a technology that uses a different
paradigm for managing the ledger; however, there are many other alternatives such as
Radix [38] or Nano [39]. IOTA is a DLT that allows hosts in a network to transfer immutable
data among each other. In the IOTA ledger, i.e., the Tangle [21], is based on a Directed
Acyclic Graph (DAG) where the vertices represent transactions and edges represent valida-
tions to previous transactions. The validation approach is thought to address two major
issues of traditional blockchain-based DLTs, i.e., latency and fees. IOTA has been designed
to offer fast validation, and no fees are required to add a transaction to the Tangle [40].
When a new transaction is to be issued, two previous transactions must be referenced as
valid (i.e., tips selection), and then, a small amount of Proof-of-Work is performed.

An important feature offered by IOTA are the Streams [41]. Streams consist of a
communication protocol that adds the functionality to emit and access encrypted message
streams over the Tangle [40]. Message streams assume the form of channels, i.e., a linked
list of ordered messages stored in transactions. Once a stream channel is created, only the
channel author can publish encrypted messages on it. Subscribers that possess the channel
encryption key (or set of keys, since each message can be encrypted using a different key)
are enabled to decode messages. A channel is addressed using an “announcement link”.
In other words, IOTA Streams enable users to subscribe and follow a messages stream
channel, generated by some device. From a logical point of view, channels are an ordered
set of messages; in fact, a channel is referenced through the link of a “starting” message.

2.6. Proxy Re-Encryption (PRE) and Cryptographic Threshold Schemes

Distributed systems usually store data as they are received, without further processing
for confidentiality. Therefore, data can be accessed by any network participant. In order
to deal with the protection of personal data, we employ in this work two cryptographic
schemes, which are described in the following. Proxy Re-Encryption (PRE) is a crypto-
graphic protocol where it is not necessary to know the recipient of the data in advance [42].
PRE is a type of public key encryption based on the figure of a proxy. A sender encrypts a
plaintext with a specific public key obtaining a ciphertext. Then, the untrusted proxy trans-
forms the ciphertext into a new ciphertext decryptable with the recipient private key, which
does not have anything to do with the first public key. This operation is performed without
learning anything about the underlying plaintext. This is possible using a re-encryption
key generated by the sender using the recipient public key and shared with the proxy.

A Threshold Proxy Re-Encryption (TPRE) adds a layer of complexity [23]. A (t, n)-
threshold scheme can be employed to share a secret among a set of n participants, allowing
the secret to being reconstructed using any subset of t (with t ≤ n) or more fragments,
but no subset of less than t. In a network where more than one node keeps secret fragments,
a mutual consensus can be reached when t nodes provide the shares to a secret recipient,
enabling the secret to be known by the latter. This can be used by a sender to share the
re-encryption key in fragments with a network of proxies; none of the latter can obtain the
whole key without the help of other t− 1 proxies.

3. Related Works

In this section, we described the related work based on the different topics we have
addressed in this work. To the best of our knowledge, no other works have developed a
personal data marketplace using the same set of technologies and techniques; thus, we
subdivided this section in work related to each part or parts of our proposed solution.

3.1. Decentralized Data Marketplace

The use of DLTs has been proposed for the implementation of data marketplaces
to take advantage of the following advantages [43,44]: (i) no need to rely on third party
platforms, (ii) better resilience against network partitioning and single point of failure, and
(iii) privacy-preserving mechanisms [45]. Most of the related work investigated the data



Sensors 2022, 22, 6260 6 of 31

distribution through DLTs, focusing in particular on the use of off-chain storage based on
DFS with data links referenced in DLTs [6,35,45]. Data exchange with such technologies
can lead to a transparent market, where transactions between data owners and data con-
sumers are recorded on DLTs and where smart contracts enable the self-enforcement of
fair exchanges between participants and the automatic resolution of disputes [46]. In [5],
the authors provided the implementation of a data marketplace based on the use of DFS
for storing data and a payment protocol that exploits Ethereum smart contracts. Similarly,
in [17,18], the proposed systems were based on P2P interactions and smart contracts to
reach an agreement while also integrating other components such as the IOTA DLT. Lopez
and Farooq [47] presented a framework for Smart Mobility Data Market in which the
participants shared their data and could transact this information with another participant,
as long as both parties reached an agreement. Their work focuses on the protection of
individuals’ personal information, while maintaining data transparency and users’ ruled
access control. Aiello et al. [35] designed IPPO, an architecture that allows users to generate
and share anonymized datasets on a distributed marketplace to service providers, while
monitoring the behavior of web services to discourage the most intrusive forms of tracking.

With respect to our work, these proposals build similar architectures but lack insight
into decentralized access control mechanisms and or decentralized data searches.

3.2. Decentralized Access Control

DLTs have desirable features that make them a reliable alternative infrastructure for
access-control systems. Their distributed nature solves the single point of failure problem
and mitigates the concern for privacy leakage by eliminating third parties. Traditional
access-control policies have been combined with DLTs: discretionary (DAC), to manage
personal data “off-chain” (i.e., not directly stored in the DLT), through the access-control
policy on the blockchain [48]; mandatory (MAC), to constrain the ability of a subject to
access on a datum through smart contracts [9]; role-based (RBAC), for achieving cross-
organizational authentication for user roles [49]; and attribute-based (ABAC), to grant
or deny user requests based on the attributes of a user, an object and environment con-
ditions [50]. Among DLT-based access-control mechanisms, Attribute-Based Encryption
(ABE) [51] offers the best policy expressiveness without introducing many elements into
the system infrastructure. ABE encrypts the data using a set of attributes that form a
policy. Only those who have a secret key that meet the policy can decrypt the data. In [51],
the authors designed a system using ABE-based access control and smart contracts to grant
data access, with similar policies mechanism to our solution, while the authors of [52,53]
proposed similar frameworks that combined DFS and blockchains to achieve fine-grained
ABE-based access control. However, in any of the three previous cases, the secret attribute
keys are issued directly by the data owner in the DLT or by a central authority.

3.3. Decentralized Data Search

With respect to our hypercube DHT contribution, a decentralized data search on DLT
and DFS is a field that has been addressed by both scholars and developers with only a few
efforts. Indeed, one of the concerns that is still open with respect to these novel technologies,
is related to implementing data discovery and lookup operations in decentralized way.
The Graph is one of the first protocols (actually the most used) with the aim of providing
a “Decentralized Query Protocol” [32]. The Graph network consists in a Layer-2 protocol
based on the use of a Service Addressable Network, i.e., a P2P network for locating nodes
capable of providing a particular service such as computational work (instead of objects
just as a CAN). In [54], the authors proposed a Layer-1 keyword search scheme that
implements oblivious keyword search in DFS. Their protocol is based on a keyword search
with authorization for maintaining privacy with retrieval requests stored as a transaction
in a blockchain (i.e., Layer-1). Specifically for IPFS [20], in order to overcome the file search
limitation, a generic search engine has been developed, namely “ipfs-search” [55]. This
solution is rather centralized and does not escape the problem of concentration similar



Sensors 2022, 22, 6260 7 of 31

to the conventional web. In response to this, a decentralized solution called Siva [56] has
been proposed. An inverted index of keywords is built for the published contents on IPFS
and users can search through it; however, Siva is proposed as an enhancement of the IPFS
public network DHT and does not feature any optimization for a keyword storage structure
apart from the use of caching. Finally, a Layer-2 solution for the keyword search in DFS has
been proposed in [44], where a combination of a decentralized B+Tree and HashMaps is
used to index IPFS objects.

3.4. Decentralized Personal Data Management

The popularity of Internet of Things devices and smartphones and the associated gen-
eration of large amounts of data derived from their sensors [57] has resulted in an interest of
individuals in the production and consumption of data via a data marketplace [11]. Making
data, which are mostly personal, available for access and trade is expected to become a
part of the data-driven digital economy [14]. In this context, we find a set of technologies
referred to as Personal Information Management Systems, which help individuals reach the
vision of Self-Sovereign Identity (SSI). SSI consists of the complete control of individuals’
digital identities and their personal data through decentralization. SSI has been generically
implemented as a set of technological components that are deployed in decentralized
environments for the purpose of providing, requesting and obtaining qualified data in
order to negotiate and/or execute electronic transactions [16].

The databox, for instance, is a PDS [8,9] that must be conceived as a concept that
describes a set of storing and access-control technologies enabling users to have direct
control of their data. In [11,58], the databox is a platform that provides means for indi-
viduals to manage personal data and control access by other parties wishing to use their
data, supporting incentives for all parties. An undirected link to this model that puts
in practice the concept of SSI is the Solid project [12]. Solid has the purpose of letting
users choose where their data resides and who is allowed to access and reuse it. Semantic
Web technologies are used to decouple user data from the applications that use this data.
The storage itself can be conceived in a different manner, while the use of Semantic Web
represents to us the core element that eases data interoperability and favors reasoning over
individuals’ policies. Semantic Web standards bring structure to the meaningful contents
of the Web by promoting common data formats and exchange protocols, such as ontologies.
The advantages consist in the fact that many ontologies are recommended by the World
Wide Web Consortium (W3C) and are thus universally understood and that reasoning
with the information represented using these data models is facilitated by mapping with
a formal language. An example is the Open Digital Rights Language (ODRL) policy ex-
pression language. This can be used in conjunction with other standard ontologies to
manage the access control to personal data in Solid [59]. Another possible approach is to
program policy expression languages such as smart contracts, in order to manage control
automatically [60].

4. Decentralized Personal Data Marketplace Architecture

In this paper, we are interested in describing the fundamentals of a decentralized
personal data marketplace: (i) data marketplace because we intend to provide a system
that enables data owners to benefit from the sharing of the data they own; the benefits can
be purely economical but also linked to the participation to an ecosystem, e.g., sharing data
for social good and research; on the other hand, we intend to provide an easier data access
to data consumers, especially to the ones who do not have the resources to compete with
Big Tech companies; (ii) personal data because we specifically focus on the type of data
that is generated by individuals through their personal devices; thus, we assume that the
role of data owner in the system is going to be engaged by individuals themselves or by
some other entities on their behalf, with a strong emphasis to the concept of Self-Sovereign
Identity [16]; and (iii) decentralized because we make use of several decentralized systems
that help to more easily achieve a disintermediation in the process of transacting data.



Sensors 2022, 22, 6260 8 of 31

In this section, we devise the marketplace architecture through a description of four
pillar systems and their interactions. As shown in Figure 1, the different architectural
components can be organized into four layers:

i A Decentralized File Storage (DFS) is used to store personal data in an encrypted form
and to create immutable universal identifiers that directly represent the content of a
piece of data. This kind of system is used to take advantage of the property of high
data availability that is often taken for granted in centralized file storages.

ii Smart contracts are used to provide decentralized access control mechanisms that can
be leveraged by data consumers to access data retrieved from the DFS, following a
policy indicated by the data owner (e.g., access through payment).

iii A Distributed Ledger Technology (DLT) is used to enable the data indexing and
validation. The ledger’s untamperability property makes sure that data integrity can
be validated by storing data’s immutable universal identifiers, specifically in the form
of hash pointers. Moreover, related pieces of data can be already linked and indexed
in this layer.

iv An hypercube-structured Distributed Hash Table (DHT) is used to provide a dis-
tributed mechanism for the search of data. This system is in charge of associating
keywords to addresses or references stored in the DLT.

Figure 1. Decentralized data marketplace architecture.

With respect to this architecture, in the following subsections, our aim is twofold: (i) to
describe in detail the hypercube DHT system and (ii) to describe the interaction between
all the architectural components. More specifically, we do not go into the details of all
the possible configurations of the DFS, DLT and smart contracts layers, as the discussion
may become too scattered and may stray away from the issues related to the decentralized
personal data market.

4.1. DFS-Based Personal Data Store

Data generated by personal devices or third-party systems on behalf of individuals
are often private in nature, but incentivizing their sharing (as opposed to keeping them
locked in data silos) can be beneficial in terms of economic gain and social good. However,
the main challenge is often to provide access under certain conditions that data subjects
find acceptable and compliant with regulations (e.g., GDPR).



Sensors 2022, 22, 6260 9 of 31

A technological solution that is opposed to centralized data silos consists of the use
of DFS for storing such personal data. DFS are usually built on top of a P2P network that
is freely accessible and where nodes execute the same protocol to store and retrieve data.
Moreover, often at the heart of such systems, we find the provision of data replication
protocols that enable a high data availability. All this means that data owners holding
some data in their device can easily participate in the DFS network or reach a DFS node to
store and replicate data. This use, then, makes data owners confident that their data can be
retrieved by any data provider that, in turn, can participate in the network or contact a DFS
node. However, to be on the safer side, data owners should incentivize DFS nodes to store
and replicate their data. How to do this is beyond the scope of this paper and we refer the
reader to our previous work that also investigates this topic [9].

DFSs have often built in their protocols the identification of data through immutable
universal identifiers that directly represent their content in order to uniquely identify
contents that are disseminated in the network. An implementation of this feature would be
the use of the hash digest of a piece of data with the aim of obtaining a deterministically
derived identifier. Thus, any node of the network holding the same piece of data, i.e., with
exact content, can use its hash to derive its immutable universal identifier. Any other node
in the network can use this id to retrieve the piece of data from other nodes and to verify
its integrity through the hash.

Finally, due to the fact that data can be easily replicated in the p2p network and, thus,
can be easily accessed by nodes that the data owner might be not aware of, we resort to
the use of encryption as a mechanism of data protection. Such a mechanism is required
both by the privacy needs of data owners and, specifically, by compliance with personal
data regulations. Strong and state-of-the-art cryptographic algorithms help avoid the re-
identification of such pseudonymous data, i.e., encrypted personal data, when shared in
the DFS network [61].

4.2. Smart Contract-Based Distributed Access Control

Smart contracts are the part of the proposed architecture where access-control logic to
share encrypted personal data is performed. Through dedicated smart contracts, access to
data can be purchased or can be enabled directly by the owner. Access is authorized only
to consumers indicated by the policies of a data owner’s contract. A policy would be for
the smart contract to maintain an Access Control List (ACL) that represents the rights to
access one or more pieces of data. In the rest of the paper, we focus on the application of
such a policy.

According to our solution, nodes in a network that maintain a permissioned blockchain
are responsible for enforcing the access rights specified in the ACLs of smart contracts.
We take advantage of the high degree of trust that a blockchain provides for the data
written in the ledger and, then, focus on the trust given to the nodes of this “authorization”
blockchain, which must read from the ledger and follow the correct policy. If a data
consumer is enlisted in the ACL, then this one is eligible to access certain data. If that is the
case, then the consumer is also eligible to obtain the key used for encrypting the data in
the DFS. Authorization blockchain nodes rely on ACLs to make sure that a data consumer
entitled to this information can obtain such a key. For the encryption operation, we refer
to a hybrid cryptographic scheme, making use of both asymmetric and symmetric keys.
Generally, each piece of data is encrypted using a symmetric “content” key k, and then,
this key is encrypted using an asymmetric keypair (pkKEM, skKEM). This consists of a Key
Encapsulation Mechanism (KEM) [62], in which the key is encapsulated and the capsule is
distributed, instead of distributing the encrypted data.

4.2.1. Access Mechanism

To ensure complete protection of the individual’s data, only the authorized recipient
of personal data should obtain the key, and nodes on the authorization blockchain should
not be able to exploit it. For this reason, we make use of a (t, n)-threshold scheme to share



Sensors 2022, 22, 6260 10 of 31

the capsule that contains the content keys among the blockchain nodes. In particular,
the Threshold Proxy Re-Encryption (TPRE) scheme is employed:

• Keypairs—each actor creates a set of asymmetric keypairs, e.g., the data owner creates
(pkDO, skDO) while the data consumer creates (pkDC, skDC).

• Capsule—a capsule is created by the data owner for each piece of data stored in the
DFS. Recall that the content key k is used for encrypting the piece of data. Then, the
result of the encryption of k results in the capsule.

• Re-encryption key—The re-encryption key rkDO→DC is created by the data owner for
each data consumer through the public key pkDC.

• Kfrags—The data consumer divides the re-encryption key into n fragments following
the (t, n)-threshold scheme. The single re-encryption key fragments are unique for each
authorization blockchain node. We call these key fragments “kfrags” for simplicity.

• Cfrags—Each authorization blockchain node receives the same capsule and a unique
kfrag. The capsule cannot be “opened” because it is encrypted with the data owner’s
public key. Only one kfrag (or a number less than t) cannot be used to completely
re-encrypt the capsule in such a way that the data consumer can open the capsule.
The authorization blockchain node only performs a re-encryption operation that takes
as input the capsule and the unique kfrags, and it outputs a new capsule fragment,
“cfrag”. The data consumer requires at least t cfrags to reconstruct the new capsule
and to decrypt it with the private key skDC.

The access mechanism is as follows: (i) the public key of the data consumer pkDC
is listed in the ACL (provided in detail in Section 5); (ii) the data consumer requests the
release of a cfrag to at least t authorization blockchain nodes using a message signed with
skDC; (iii) upon consumer request, each node checks if the signatory pkDC is in the ACL
through an interaction with the smart contract in the blockchain; (iv) if this is the case, then
each node releases the cfrag; (v) once the data consumer obtains t cfrags, the capsule can be
reconstructed and decrypted with skDC; and (vi) the decryption reveals the content key k
needed to decrypt the desired piece of data stored in the DFS.

4.3. DLT Indexing and Validation

One of the main use cases of DLTs consists in data sharing due to their intrinsic
property of untamperability. Once collected, in many cases, data can be stored directly
on-chain, in a DLT, to validate their integrity. However, preventing the on-chain storage
is a preferable solution, not only for retaining high data reads availability and better
performances for data writes [9] but also because on-chain personal data are generally
incompatible with data protection requirements (i.e., to guarantee personal data deletion to
a data subject). Thus, our solution consists of storing personal data in a DFS and reference
them in a DLT via their immutable universal identifiers, e.g., hash pointers. Moreover,
due to the nature of some proposed DLTs, related pieces of data can be already linked and
indexed in the ledger. That is the case of the IOTA DLT, which manages the upload of data
in the form of a stream channel thanks to the Streams protocol. We refer to this DLT and
this protocol to ease the description of the following parts.

Layer-2 Solution

While Layer-1 solutions in DLTs define the form of the ledger, its distribution, consen-
sus mechanism and features, Layer-2 solutions are built on top of Layer-1 without changing
its trust assumptions, i.e., the consensus mechanism or the structure [63,64]. Layer-2 proto-
cols allow users to communicate through mediums external to the DLT network, reducing
the transaction load on the underlying DLT. On top of the IOTA layer-1 DLT, we designed
a Layer-2 solution using a DHT with the aim of facilitating the search for large amounts
of data through specific keywords (Figure 2). In order to obtain information from a IOTA
message within a stream channel, indeed, it is necessary to know the exact address of
the message or of the channel, i.e., the announcement link. However, the announcement
link of a stream channel does not provide any information related to the type and kind



Sensors 2022, 22, 6260 11 of 31

of messages. No mechanisms are provided by IOTA (and the majority of DLTs) for the
discovery based on the content of certain data/streams channels that are available in the
Tangle. This is the issue we deal with in this paper. In the remainder of this section, we
describe how to surmount such limitations. In our system, every stream channel is indexed
by a keyword set and then how such a keyword set is exploited to look for specific kinds
of contents.

Figure 2. Layers in the context of DLTs. Layer zero consists of the DLT network, while Layer-1 is the
set of software frameworks run by the network nodes (e.g., the ledger). Layer-2 solutions are the ones
that leverage Layer-1 for other services, i.e., the hypercube DHT in our case.

4.4. Hypercube-Structured DHT

Considering O as the set of all stream channels in IOTA, the idea is to map each object
o ∈ O to a keyword set Ko ⊆W, where W is the keyword space, i.e., the set of all keywords
considered. In general, we refer to K ⊆W as a keyword set that can be associated to a data
content (i.e., the metadata associated to it) or a query (i.e., we are looking to some content
with a specific metadata). By using a uniform hash function h : W → {0, 1, . . . , r − 1},
a keyword set K can be represented by the result of such a function, i.e., a string of bits
u where the 1s are set in the positions given by one(u) = {h(k) | k ∈ K}. In other words,
each k ∈ W has a fixed position in the r-bit string given by h(k), and that position can be
associated to more than one k (i.e., hash collision). Then, every keyword set K is represented
by a r-bit string where the positions are “activated”, i.e., are set to 1, by all the k ∈ K.

We use these r-bit strings to identify logical nodes in a DHT network, e.g., for r = 4,
a node id can take values such as 0100 or 1110. In particular, inspired by [24], we refer
to the geometric form of the hypercube to organize the topological structure of such a
DHT network. Hr(V, E) is a r-dimensional hypercube, with a set of vertices V and a set of
edges E connecting them. Each of the 2r vertices represents a logical node, whilst edges are
formed when two vertices differ by only one bit, e.g., 1011 and 1010 share an edge. In the
network, the nodes represented by vertices that share an edge are network neighbors as
well. To find out how far apart two vertices u and v are within the hypercube, the Hamming
distance can be used, i.e., Hamming(u, v) = ∑r−1

i=0 (ui ⊕ vi),, where ⊕ is the XOR operation
and ui is the bit at the i-th position of the u string, e.g., for u = 1011 and v = 1010, we have
Hamming(u, v) = 1.

4.4.1. Keyword-Based Complex Queries

In our system, contents can be discovered through queries that are based on the
lookup of multiple keywords, associated with data. Such queries are processed by the
DHT-based indexing scheme described in the previous section. The base idea is to associate
a keyword set to each IOTA stream channel through the DHT. In particular each logical
node locally stores an index table that associates a keyword set Ko to the announcement
link of an IOTA stream channel, i.e., the reference of an object o. Then, given a keyword
set K, the associated r-bit string is used to reach the logical node responsible for K through



Sensors 2022, 22, 6260 12 of 31

a routing mechanism, in order to obtain the set of objects = {o ∈ O | Ko ⊇ K}. For
instance, with W = {“Turin”, “Lingotto”, “Temperature”, “Celsius”} and 1010 representing
the keyword set K = {“Turin, Temperature”}, if u ∈ V is the node that is responsible for K
because the id of u is equal to 1010, then u is in charge of maintaining a list of announcement
links of IOTA stream channels containing the temperature of the city of Turin. Once that
node is located, the objects = {o ∈ O | Ko = K} it stores in its index table can be returned
or aggregated with other nodes’ objects. These objects consist of a list of announcement
links that can be used to obtain messages from IOTA.

4.4.2. Multiple Keywords Search

Our system provides two functions for making queries based on multiple keywords:

• Pin Search—this procedure aims at obtaining all and only the objects associated
exactly with a keyword set K, i.e., {o ∈ O | Ko = K}. Upon request, the responsible
node returns to the requester all the announcement links of the corresponding objects
that it keeps in its table associated with K.

• Superset Search—this procedure is similar to the previous one, but it also searches for
objects that can be described by keyword sets that include K, i.e., {o ∈ O | Ko ⊇ K}.
Since the possible outcomes of this search can be quite large, a limit l is set.

For the Pin Search we need to retrieve objects only from one node, whilst for Superset
Search, we need to retrieve objects from all nodes that are responsible for a Superset of K.
Such nodes are contained in the sub-hypercube SH(S, F) induced by the node u responsible
for K, where S includes all the nodes s ∈ V that “contain” u, i.e., ui = 1⇒ wi = 1, while
F includes all the edges e ∈ E between such nodes. Thus, during a Superset Search,
the induced sub-hypercube is computed and then only nodes in such a sub-hypercube are
queried using a spanning binomial tree, as described in [24] (definition 4.2). The l limit is a
query parameter that indicates the maximum number of objects to return when traversing
the spanning binomial tree.

4.4.3. The Query Routing Mechanism

Queries can be injected into the system by users external to the DHT to any v ∈ V
network node. Through a routing mechanism, the query reaches a node u ∈ V that is
responsible for a keyword set K. This process is described in detail in Algorithm 1.



Sensors 2022, 22, 6260 13 of 31

Algorithm 1: Query Routing Mechanism
Input: q query, K keyword set, l limit
Data: v node string, one(v), neighbors(v)
Result: {o ∈ O | Ko ⊇ K}

1 one(u)← {h(k) | k ∈ K}
2 if one(u) 6= one(v) ∧ From(q) = “User“ then
3 w← {n | n ∈ neighbors(v)∧Min(Hamming(n, u))}
4 return QueryRoutingMechanism(w, q, K, l)
5 else
6 if Type(q) = “PinSearch“ then
7 return GetObjectsFromIndexTable(K, −1)
8 else if one(u) ⊆ one(v) then // i.e., SupersetSearch
9 objectsList← GetObjectsFromIndexTable(K, l)

10 l ← l− Length(objectsList)
11 From(q)← “Node“
12 while l > 0 do
13 c← GetNextSBTreeChild(u)
14 cList← QueryRoutingMechanism(c, q, K, l)
15 objectsList← objectsList + cList
16 l ← l− Length(cList)
17 end
18 return objectsList
19 end
20 end

5. k-DaO Use Case: Participatory Data Stewardship and Citizen-Generated
Data Creation

The aim of this section is to describe a possible implementation of the above archi-
tecture through a specific use case. We first describe the scenario and then we go into the
details of the technical specification. With this scenario, we find ourselves in the general
context of facilitating the use of privately held data for the public interest. This is in line
with the vision of the European Union’s strategy on data sharing for public interest [7].
More specifically, the vision we intend to pursue with the implementation of our decen-
tralized personal data marketplace is part of the intent to enable different stakeholders
(government, businesses and citizens) to give access to and to use data transformed into
non-personal form in order to create value and to make better decisions. In fact, the Euro-
pean Data Strategy elaborates on some points in this area, with components related to data
governance and common data spaces, also by means of the Data Governance Act [14]. It
enables the safe reuse of certain categories of public-sector data such as personal data.

The specific context of our scenario deals with participatory data [2] such as citizen-
generated ones. Citizen-generated data, which include a range of scenarios such as par-
ticipatory sensing to crowdsourced geospatial datasets, can be integrated with open data
portals and, in the future, with shared data spaces. Although, to date, they are not as
impactful, the aim is to increase and improve the presence of such data and to involve
citizens in designing open data policy, processes and governance [65]. In most cases, citizen-
generated data should be made orthogonal to the application of data protection laws and
regulations, e.g., GDPR. Therefore, citizen-generated data should not contain personal data
or personal data shall be appropriately anonymized or aggregated.

With this in mind, we describe the use case with the help of Figure 3. At the highest
level, the flow of data is as follows: (i) citizens store and maintain their personal data in a
PDS; (ii) a data aggregator undertakes the task of aggregating a specific kind of data and
accesses the PDS through smart-contract access policies; (iii) the aggregator uses algorithms
such as k-anonymity [66] to render the input personal data anonymous; and (iv) the citizen-



Sensors 2022, 22, 6260 14 of 31

generated anonymized aggregated dataset is published for potential data consumers. The
main idea is to enable the participation of data owners in the dataset generation through a
DAO. A token-based incentive for DAO members, i.e., tokenized data structures, can be
used to enable participants to work together to build a curated dataset in pursuit of the
instantiation of a decentralized, tokenized data marketplace [19].

Figure 3. Citizen-generated data use case. Data owners store personal data in a PDS and set some
access policies through smart contracts. A data aggregator accesses these data and produces an
anonymized dataset in a participatory data stewardship framework. The anonymized aggregated
dataset can then be accessed by other data consumers.

We imagine a concrete scenario of citizen-generated hiking trails or pedestrian travel
routes, produced using GPS-enabled smartphones using application such as Komoot or
AllTrails [67]. For this scenario, one can simply consider three kinds of personal data: (i) the
user’s travel trace, i.e., a set of latitude and longitude points associated with a timestamp;
(ii) the user’s photos taken during the travel; and (iii) the list of nearby Bluetooth devices
updated with a constant interval.

5.1. Anonymizing Data by Aggregation

Figure 3 shows an overview of the interaction between the main actors. Data owners
(leftmost boxes) maintain personal data in a PDS implemented using IPFS [20] as DFS.
These data are travel traces, photos and Bluetooth ids recorded during the data owners’
hiking sessions. Data owners also register personal data they want to share along with
descriptions of what they measure, i.e., keywords in the hypercube DHT (not shown in
figure; see Section 4.4). Each piece of data is then indexed in the IOTA DLT through a new
stream channel for each hiking session (not shown in figure). The messages in the channel
refer to data in IPFS using the CID as an immutable universal identifier. An access-control
smart contract owned by the data owner (between data owners and aggregator in the
figure) points to different stream channels using the associated announcement link. This
smart contract is stored in a private permissioned Ethereum blockchain implemented using
GoQuorum [68], i.e., the authorization blockchain. The data aggregator (at the middle of
the figure) interacts with such a blockchain to request the data owners’ data in line with
their policies. If it manages to access the data of at least k data owners, the aggregator
creates a k-DaO with the owners in the same blockchain, in order to work in a participatory
data stewardship framework [2]. The anonymized dataset must meet certain requirements;
otherwise, the k-DaO may decide to stop production. For instance, the data aggregator
should be able to perform the data aggregation, producing a dataset that presents properties
of k-anonymity and differential privacy [69]. This dataset can then be accessed by a variety
of data consumers (rightmost boxes in figure) using the same data marketplace in a process
where every participant to the dataset creation is rightfully rewarded.

We now make a brief digression on what it means to apply anonymization techniques
in this case. The GDPR Recital 26 states that personal data becomes anonymous if it is



Sensors 2022, 22, 6260 15 of 31

‘reasonably likely’ that no identification of a natural person can be derived [13]. This
is based on the fact that the anonymization of a dataset can be defined as robust on a
case-by-case basis [70]. Some techniques can provide privacy guarantees and can be used
to generate efficient anonymization processes but only if their application is engineered
appropriately. The k-anonymity proposal was introduced in [66], and it is considered one
of the most popular approaches for syntactic protection, i.e., each release of data must be
indistinguishably related to no less than a certain number (e.g., k) of individuals in the
population. For instance, through a generalization approach, original values are substituted
with more general values, such as the date of birth generalized by removing day and month
of birth. On the other hand, we find semantic techniques, i.e., when the result of an analysis
carried out on a dataset is insensitive to the insertion or deletion of a tuple in the dataset.
Differential privacy [69] is the main example in this case, where a dataset is released and
recipients learn properties about the population as a whole but that are probably wrong for
a single individual. This can be achieved for instance by adding noise to the original dataset.

5.2. Step Zero: Search Data on the Decentralized Marketplace

The first step, or “step zero”, before accessing any piece of data is the search for a
specific kind of data, i.e., the data subset that a potential data consumer is interested in.
This is the part where the hypercube DHT comes into play (see Section 4.4 for a detailed
explanation). Figure 4 shows an example of the search of data on the decentralized market-
place. The data aggregator requests for a SuperSet Search to the hypercube, with a keyword
set K = {“walk”, “mountain”, “Tuscany”}. The hypercube returns a set of aggregation links
pointing to IOTA stream channels containing related data, e.g., 6bb3347. . . :219. The first
message of the stream channel is open to the marketplace users and includes information
that points to the smart contract used for the access control. The information includes the
identifier of the authorization blockchain network and the smart contract address. Each
subsequent channel’s message includes information to the data themselves, i.e., hash links
in the form of IPFS CIDs. In particular, each message stores the CID of a IPFS directory that
stores the location data, photo and Bluetooth ids in a specific timestamp, e.g., QmW...V4b2t
is the CID of the directory and QmW...V4b2t/1 contains a location point and timestamp.
Of course, the data are encrypted; hence, the content of the IPFS data are not meaningful at
this point. The next step, thus, is to gain access to the content key used for the encryption.

Figure 4. Example of searching data on the decentralized marketplace.

5.3. Smart Contracts Implementing the Distributed Access Control

As seen in Section 4.2, the interesting aspect of smart contracts is that an algorithm
executed in a decentralized manner enables two parties, i.e., data owner and aggregator,
to reach an agreement in the transaction of the data. This not only increases the disinterme-
diation in such a process but also leaves traces to be later audited and provides incentives
to all the actors to correctly behave. Figure 5 graphically shows the process of the data



Sensors 2022, 22, 6260 16 of 31

aggregator accessing data owner’s data, while Figure 6 shows the UML Class Diagram of
the smart contract implementations we discuss in this subsection.

Figure 5. Example of the distributed access control where a data aggregator requests access to the
data of some data owners.

Figure 6. UML Class Diagram of DataOwnerContract and AggregationContract. Some classes, attributes
and methods have been removed to render the diagram clearer.

• Each data owner has previously deployed a DataOwnerContract in the authorization
blockchain. The data aggregator too has previously deployed an AggregatorContract.

• In the “step zero”, the aggregator has obtained a list of DataOwnerContract addresses
that point to IOTA stream channels through as many announcement links. Then,
they produce a data access consent request in a string form for such data (the use of



Sensors 2022, 22, 6260 17 of 31

standardized models for the consent request, such as W3C recommended ontologies,
is left as future work).

• The aggregator gives these three pieces of information as inputs to the requestAccessTo-
Data() method in the AggregatorContract(), together with a series of parameters needed
for the k-DaO (shown in the next subsection). This method implements, in only one
blockchain transaction, the request to access data for each DataOwnerContract found as
input. In particular, the method requestAccess() is invoked for each DataOwnerContract,
with the associated announcement link and request as input (Figure 6 shows id_ as
parameter representing the link and an array of addresses users for representing the
Ethereum accounts that will be granted access).

• A NewRequest event will reach each data owner. This one decides to consent to the ac-
cess to data based on the data access consent request received through the event. If so,
the data owner invokes the grantAccessRequest() method in the DataOwnerContract.

• Among the parameters set in requestAccessToData(), m was set as the minimum number
of members needed to create the k-DaO and to start the data aggregation process. It is
also the minimum number of participants required to provide “reasonable” anonymity.

• The aggregator uses the checkKgtM() method to check if the number k of data owners
that granted the access to their data is greather than m. When this happens, the aggre-
gator can create the k-DaO through the createkDaO() method that instantiates a new
kDaO contract.

• The aggregator can now access all content keys for the decryption of all the data
owners’ data through the authorization blockchain nodes, as described in Section 4.2.1.

5.4. Smart Contracts Implementing the k-DaO

The k-DaO is DAO composed by the k Data Owners that grant access to their data
to the data aggregator. Simply put, the aggregator stakes a safety deposit, and the DAO
is used to start at any moment a vote to redeem this stake. The rationale behind it is to
limit aggregator’s malicious behavior. Not only for this but also if the creation process
of the anonymized dataset involves a more complex case of curated dataset (e.g., Open-
StreetMap [71]), then DAO members can make new proposals and add suggestions to vote
in order to steer the development of the dataset generation. Figure 7 graphically shows the
process of k-DaO creation and voting, while Figure 8 shows the UML Class Diagram of the
smart contract implementations we discuss in this subsection.

Figure 7. Example of the anonymized dataset creation and DAO voting.



Sensors 2022, 22, 6260 18 of 31

Figure 8. UML Class Diagram of kDaO, TokenTimelockProxy, TokenTimelockUpgradeable and kDaOToken.
Some classes, attributes and methods have been removed to render the diagram clearer.

• A kDaO contract is created for each aggregation process. The AggregationContract acts
as a contract factory but implementing a proxy pattern (EIP-1167 Minimal Proxy [72]).
Instead of deploying a new contract each time such as in the factory pattern, this
implementation clones an already deployed contract functionalities by delegating all
methods invocation to it.



Sensors 2022, 22, 6260 19 of 31

• Some DAO parameters were already set up during the request data access process,
such as the amount the aggregator stakes. When the kDaO contract is created, a transfer
of an amount of ERC20 tokens [73], i.e., the kDaOToken, is performed automatically
from the aggregator account to the kDaO contract. At the end of the aggregation
process, the aggregator can redeem this stake if all operations have been successful.

• k-DaO members can call for a vote and then decide on a proposal. Any member
can make a proposal using the submitProposal() method, and for that proposal, all
members can submit a suggestion using submitSuggestion(). Then, all members vote
on a suggestion regarding that proposal. For instance, a proposal could be to “Change
anonymization technique”, and some suggestions could be “Differential privacy” or
“k-anonymity”. Each proposal has their own debate period and any member can
invoke vote() to vote for a suggestion within that time period. After the debate period,
the method executeProposal() counts the votes, if minQuorum is reached, then it stores
the result and possibly enacts a specific procedure.

• Indeed, any extension of the previous voting smart contract can be developed to allow
for a decision taken to directly enact an operation to be executed on-chain. In this case,
submitRefundProposal() specifically starts a vote to take the data aggregator’s staked
amount and to redistribute it to all members. In this case, executeProposal() would
subdivide the staked amount to all the members if the proposal is passed.

• The kDaOToken is central in the DAO, as it also allows members to vote. Indeed, a mem-
ber vote weight is proportional to the amount of tokens locked until a date that comes
after the debate period ends. This is performed in order to avoid malicious data own-
ers unreasonably voting to redeem the aggregator stake. A TokenTimelockUpgreadable is
used for each token lock. This is created using the proxy pattern as well.

5.5. Anonymized Aggregated Dataset

Finally, the work of the aggregator comes to produce new data in the form of anonymized
aggregated data, providing anonymity by design. Multiple configurations of aggregated data
can be produced, if stated earlier. Additionally, some kind of proof can be implemented for
measuring the exact quantity of data used from each subject’s dataset, e.g., storing in the kDaO
contract the root of a Merkle tree that contains all the data pieces hashes used as leaves; then,
k-DAO members can validate it by requesting (off-chain) leaves to the aggregator.

For the sake of the citizen-generated data use case, the result of the whole process is
stored in an open data platform. If needed, some data, such as the participants list, can be
shown upon request, but it is not public, since the authorization blockchain is a private
permissioned one. In other cases, the resulting dataset can be encrypted, uploaded in
IPFS and then referenced in new stream channels. In this case, the dataset is treated as all
the other kinds of data in the marketplace and data consumers can access to it through
a DataOwnerContract owned by the aggregator. In this case, some kind of royalties can
be transferred directly to the k-DaO members, where the payment is proportional to the
contribution produced by each participant, e.g., aggregator = 55%, data owner1 = 20%,
data owner2 = 10%, data owner3 = 15%.

6. Performance Evaluation

Based on the above k-DaO use case, we conducted the performance evaluation in three
stages: (i) in the first stage, we simulated a DHT network implementing the hypercube
queries of the use case’s “step zero”, in order to test the average steps necessary to reach
all nodes; (ii) in the second stage, we set up a local permissioned authorization blockchain
to test the distributed access control in use case’s steps one and two; and (iii) in the third
stage, we evaluate the implementation of all smart contracts by measuring the gas usage.

In this work, we lack an analysis of the performances for storing and retrieving data
from IOTA and IPFS. However, we dealt with these aspects in previous work, testing
out specifically the storing of personal data such as location data and photos, i.e., testing
IOTA [74] and DFS including IPFS [75]. We refer the reader to these two studies. Moreover,



Sensors 2022, 22, 6260 20 of 31

being separate systems, the latency in performing operations are added up one another.
Meaning that a data aggregator first needs to obtain the content key from the authorization
blockchain (evaluated in this work) and then operate with IOTA or IPFS.

The decentralized personal data marketplace component implementation can be found
as an open source code on Github [76–79].

6.1. Hypercube DHT Simulation

We conducted a simulation assessment using PeerSim, a simulation environment
developed to build P2P networks using extensible and pluggable components [80,81]. Once
the hypercube-structured DHT was designed and implemented for multiple keyword
search Section 4.4.2, we focused on studying the efficiency of the routing mechanism.
The simulation implementation and the tests data can be found as open source code in [82].
Below are the main results obtained.

6.1.1. Tests Setup

Several tests were carried out assuming different scenarios in which the network
consisted of a variable number of nodes and stored a variable number of objects. In order
to evaluate Pin Search and Superset Search, tests were carried out on different sizes of the
hypercube. Specifically, the number of nodes varied from 128 (r = 7) up to 8192 (r = 13).
Then, for each dimension r, a different number of randomly created keyword objects,
i.e., IOTA announcement links, was inserted in the DHT. The number of objects taken into
consideration varies from 100, 1000 and finally 10,000.

6.1.2. Results

Given the nature of the tests, i.e., a simulated network, we considered the number of
hops required for each new query as a parameter to be evaluated. A hop occurs when a
query message is passed from one DHT node to the next. The query keyword sets were
randomly generated, and the starting node was randomly chosen. For each type of test,
50 repetitions were performed, and then, the average results were calculated. For the
Superset search, the limit value was set to l = 10 objects.

Pin Search

As shown in Table 1 and Figure 9 (left), the number of hops required to transmit a
message from the source node to the destination node increases as the hypercube dimension
increases, i.e., nodes number. The average number of hops increases from about 3.5 for
128 nodes (r = 7) to about 6.72 for 8192 nodes (r = 13). This behavior can be explained
by the fact that, by increasing the hypercube dimension, the path that a message must
take before reaching its destination is automatically enlarged. The number of objects in
the testbed does not affect the final outcome, since the path to reach the target node only
follows the rationale of the hypercube and does not depend on the number of keyword
object associations stored in the DHT.

Table 1. Pin Search number of hops.

Nodes Number
Average Standard Deviation Confidence Interval (95%)

100 1000 10,000 100 1000 10,000 100 1000 10,000

128 3.64 3.2 3.5 1.33 1.32 1.12 (3.2, 4.0) (2.8, 3.5) (3.1, 3.8)
256 4.08 4.28 3.66 1.45 1.48 1.31 (3.6, 4.4) (3.8, 4.6) (3.2, 4.0)
512 4.62 4.8 4.72 1.57 1.70 1.24 (4.1, 5.0) (4.3, 5.2) (4.3, 5.0)

1024 5.02 4.96 4.9 1.68 1.67 1.69 (4.5, 5.4) (4.4, 5.4) (4.4, 5.3)
2048 5.48 6.04 5.48 1.76 1.85 1.69 (4.9, 5.9) (5.5, 6.5) (5.0, 5.9)
4096 6.02 6.18 5.96 1.55 1.61 1.62 (5.5, 6.4) (5.7, 6.6) (5.5, 6.4)
8192 6.78 7.08 6.28 1.63 1.60 1.64 (6.3, 7.2) (6.6, 7.5) (5.8, 6.7)



Sensors 2022, 22, 6260 21 of 31

Figure 9. Number of hops on average for the Pin Search (left) and Superset Search (right).

Superset Search

The tests performed on the Superset Search present results with dissimilar values
with respect to the previous case (Table 2 and Figure 9 (right)). At a first glance, in fact,
those apparently anomalous values stand out, corresponding to a high number of hops
between nodes, which decreases with the referenced object number. With a low number of
objects referenced in the DHT, there are a high average number of hops needed to satisfy
the Superset search. This phenomenon can be explained by the fact that the Superset search
traverses the spanning binomial tree of the sub-hypercube induced by the node responsible
for the keyword set, until it finds the number of objects indicated by the limit, i.e., l = 10.
Hence, in a network with many nodes and few objects, the query might take longer to reach
that limit because many nodes are “empty”, i.e., do not reference any object. Considering
the case of 4096 nodes (r = 12) and 10,000 objects, in a Pin search, 5.96 hops are required,
on average. In a Superset search, other 11.92− 5.96 = 5.96 hops are needed to reach other
nodes containing other results of the superset search, until the limit l is reached. If objects
were uniformly distributed, the total number of nodes requested to return objects would
have dropped to 4 nodes because each node would have maintained 10,000

4096 = 2.44 object
references on average and l = 10(∼= 4× 2.44).

Table 2. Superset Search number of hops.

Nodes Number
Average Standard Deviation Confidence Interval (95%)

100 1000 10,000 100 1000 10,000 100 1000 10,000

128 18.28 4.54 3.52 8.44 1.54 1.19 (15.9, 20.6) (4.1, 4.9) (3.1, 3.8)
256 35.90 6.80 4.16 17.89 2.25 1.43 (30.9, 40.8) (6.1, 7.4) (3.7, 4.5)
512 51.18 12.16 4.46 37.85 3.29 1.31 (40.6, 61.6) (11.2, 13.0) (4.1, 4.8)
1024 91.06 21.70 5.08 72.44 6.23 1.68 (70, 111) (19.9, 23.4) (4.6, 5.5)
2048 115.70 34.56 7.84 98.39 13.00 1.98 (88, 142) (30.9, 38.1) (7.2, 8.3)
4096 196.00 63.38 11.92 186.88 25.37 2.64 (144, 247) (56.3, 70.4) (11.1, 12.6)
8192 243.90 120.38 20.38 253.59 68.65 6.28 (173, 314) (101, 139) (18.6, 22.1)

6.1.3. Discussion

The results obtained confirm what was expected due to the hypercube structure of the
network: the Pin Search number of hops are of the order of the logarithm of the hypercube
logical node number, i.e., log(n) = r. In particular, on average, they are equal to log(n)

2 = r
2 .

For what concerns the Superset Search number of hops, on average, it is equal to log(n)
2 + l,

where l is the limit of the number of nodes in the sub-hypercube to reach.
These results show the goodness of the solution in the trade-off between memory

space and response time. In traditional DLTs, such as Ethereum and IOTA, searching for
a datum in a transaction means traversing all the “transaction sea” in the ledger, and for
this reason, the current solution is to use centralized “DLT explorers” [83]. On the other



Sensors 2022, 22, 6260 22 of 31

hand, in the case of sharded DLTs, the proposed solution could become a Layer-1 protocol
to search the data between many shards.

Finally, while in this study we focused on DLTs as the underlying data storage, it is
worth mentioning that, due to the origins of the hypercube proposal [24], DFS systems
can perfectly fit with such architecture, since most of them are based on DHT already.
Indeed, the implementation of the hypercube for keywords search in IPFS is a matter of
future work.

6.2. Authorization Blockchain Performances

In this subsection, we present the methodology and results of the performance evalua-
tion we carried out for the authorization blockchain. We deployed all the smart contracts
in a local permissioned Ethereum blockchain, using the Consensys GoQuorum implemen-
tation [68]. ConsenSys Quorum is an open-source protocol layer with the aim of building
Ethereum compatible environments for enterprises. Supporting the Ethereum protocol
means the possibility to execute smart contracts compiled from Solidity. Moreover, it is
composed of a suite of different technologies, among which we find GoQuorum, a fork of
the Ethereum node implementation in Golang. The rationale behind this choice is to be
able to implement private smart contracts and transactions for protecting personal data
stored on-chain by the data owners, a feature that GoQuorum supports.

We have already tested some implementations of the authorization blockchain in [9],
making a comparison between two different cryptographic methods for key distribution
using two open source library implementations. In this work, we test our implementation
of the TPRE Umbral protocol [23], openly available as source code [77]. This is executed
by the authorization blockchain nodes and thus integrated with the GoQuorum software.
The client software and the smart contracts implementation is open source too and can be
found in [84].

6.2.1. Test Setup

During the test, we used the Istanbul Byzantine Fault-Tolerant (IBFT) consensus
mechanism: each block requires multiple rounds of voting by the set of validators (>66%),
recorded as a collection of signatures on the block [68]. During the tests, four validator
nodes were deployed to create the base blockchain network. Each validator node executes
the consensus mechanism with parameter values set up following the recommendations
in [68], e.g., minimum inter-block validation time is set to 1 s. Moreover, these nodes also
execute the TPRE service. One non-validator node is used to expose the APIs for external
clients to interact with the blockchain. Several client nodes are created to interact with these
APIs, which in turn disseminate transactions within the network [85]. The network was
run on a server with a 10 cores Intel Xeon CPU and 8 GB of DDR4 RAM.

In the following, we evaluate this set of operations that implement the scenario shown
in Section 5.3.

1. Request Access—this operation is executed by the data aggregator and consists of
only one method invocation, i.e., the requestAccessToData() method in the Aggregator-
Contract; we recall that this method requests access to data for each DataConsumerCon-
tract given as input.

2. Grant Access—this operation is executed by each data owner by invoking the grantAc-
cessRequest() from their own DataConsumerContract(); this will store the aggregator
public key pkDA in the smart contract ACL.

3. Create KFrags—this operation includes three subsequent steps; first, the owner
generates a new set of n kfrags using the data aggregator’s pkDA (as described in
Section 4.2.1); then, the owner sends a kfrag each to the n authorization blockchain
nodes; finally, the owner requests to the n nodes the creation of a cfrag using the kfrag
just got (the capsule for the piece of data interested was sent in a pre-processing step,
not accounted for the measuring).



Sensors 2022, 22, 6260 23 of 31

4. Get CFrags—the last operation is executed by the data aggregator to obtain access to
the content key; the aggregator first sign a challenge-response message using the secret
key skDA associated to the pkDA; then, the aggregator sends a Get CFrag request to k
authorization blockchain nodes using the signed message; and each node validates
the signature and check if pkDA is in the associated ACL in the DataConsumerContract,
and if so, each node returns a cfrag to the data aggregator.

6.2.2. Results

We recall that n is the number of validator/authorization blockchain nodes and was
set to 4. We consider a round of operations the successful execution of the above described
operations in order. The independent variables tested were the threshold t, from 1 to 4,
and the number of data owners k, from 10 to 80 with an increase of 10 each time. We tested all
the combinations of independent variables 3 times; then, we averaged the results. In each
test, we initiated the round of operations 10 times for each data owner, with an interval of
3000 ms on average (value given by a Poisson Process with a mean of 3000 ms). This implies
that, if overall, the set of operations lasted more than 3000 ms to be executed, probably
another one was launched in parallel. This is for each data owner. The dependent metrics
we measured with the tests are the latency, for a response to an operation, and the system
throughput, i.e., the number of rounds of operations per second.

Round of Operations

Figure 10 shows the average response latency and standard deviation for each opera-
tion in a round. The first result that stands out is the large difference in latency between
the Request Access and Grant Access operations and the Create KFrags and Get CFrags
operations. This is due to the fact that the first two operations involve writing in the
authorization blockchain’s ledger. Thus, we can already see the impact of the blockchain in
the overall system response latency.

Figure 10. Average response latency and standard deviation for each operation in a round, varying
the threshold from 1 to 4 and data owners from 10 to 80.

As can be seen, in general, the t value does not affect the results greatly. On the
other hand, as expected, the k value that represents the number of data owners is the key
factor. A slow but constant increase in the round response latency happens between 10
and 40 owners, starting from 2 s latency to 3, for both Request Access and Grant Access
operations. After 40 owners, the latency increases faster per number of owners. This seems
to be correlated to the fact that a new round is started on average each 3 s for each data
owner. Thus, if the round takes approximately more than 3 s, as from k = 50 onward, many
more operations start to be executed in parallel. The increase in such parallel executions
seems to increase the response latency overall.



Sensors 2022, 22, 6260 24 of 31

While the blockchain writing-dependent operations are in the order of the thousand
milliseconds, i.e., seconds, the KFrags and CFrags operations are in the order of the hun-
dreds and can be better analyzed using Table 3.

Table 3. Average response latency and confidence interval for the Create KFrags and Get CFrags
operations in a round, varying t and k.

k t
Create KFrags (ms) Get CFrags (ms)

Average Conf Int (95%) Average Conf Int (95%)

10

1 75.6 (72.11, 79.09) 106.63 (104.79, 108.47)

2 86.58 (82.07, 91.09) 116.01 (113.49, 118.54)

3 88.23 (82.38, 94.09) 120.17 (117.04, 123.3)

4 100.48 (94.42, 106.53) 127.98 (124.23, 131.73)

20

1 155.96 (144.22, 167.69) 128.38 (122.94, 133.82)

2 130.32 (122.91, 137.73) 135.27 (130.74, 139.79)

3 144.0 (136.01, 152.0) 152.28 (146.56, 157.99)

4 146.92 (135.99, 157.85) 163.61 (154.72, 172.49)

30

1 113.11 (107.89, 118.33) 119.94 (116.93, 122.95)

2 146.23 (140.54, 151.92) 141.16 (137.83, 144.49)

3 172.57 (163.51, 181.62) 167.19 (160.77, 173.62)

4 162.65 (154.41, 170.89) 173.43 (167.14, 179.73)

40

1 211.23 (200.45, 222.01) 158.86 (152.58, 165.15)

2 176.49 (168.25, 184.73) 166.48 (160.42, 172.53)

3 206.08 (196.19, 215.97) 192.9 (185.59, 200.22)

4 220.54 (210.67, 230.4) 209.77 (202.55, 216.98)

50

1 122.28 (117.61, 126.95) 122.32 (119.94, 124.7)

2 189.77 (179.35, 200.2) 170.66 (163.35, 177.96)

3 235.03 (224.69, 245.36) 215.84 (207.61, 224.08)

4 267.82 (257.65, 277.99) 251.73 (243.17, 260.3)

60

1 172.14 (166.32, 177.95) 148.48 (144.76, 152.19)

2 177.44 (169.55, 185.34) 172.77 (166.75, 178.8)

3 225.4 (216.35, 234.45) 208.26 (201.29, 215.22)

4 140.75 (135.36, 146.15) 159.98 (155.94, 164.03)

70

1 158.52 (152.33, 164.7) 141.2 (137.57, 144.83)

2 179.65 (173.0, 186.3) 166.32 (161.58, 171.05)

3 275.55 (264.45, 286.65) 250.54 (241.68, 259.4)

4 230.97 (221.41, 240.53) 229.48 (221.51, 237.45)

80

1 178.65 (172.19, 185.1) 153.97 (149.92, 158.02)

2 198.21 (190.55, 205.88) 178.61 (173.34, 183.89)

3 204.39 (196.89, 211.89) 205.24 (198.95, 211.53)

4 226.86 (217.05, 236.66) 231.71 (223.5, 239.92)

In both cases, we can see a direct correlation of response latency with both the t and k
values. With k = 10, latency values for the Create Kfrag operation are around 90 ms, while
those for the Get CFrag operation are around 110 ms. With k = 80, the values more or
less double.



Sensors 2022, 22, 6260 25 of 31

System Throughput

Figure 11 shows the results obtained when considering the round as a single operation,
i.e., aggregating the results for each single operation. The figure thus shows the number
of rounds per seconds, i.e., ops/s. The throughput results in more than 0.2 ops/s for the
number of owners k = 10 and linearly decreases with the increase in k. With k = 80, we
have on average a throughput of ∼0.07 ops/s. In this case as well, we can notice how
the influence of t is almost irrelevant. As we have seen before, t influences greatly the
Create Kfrag and Get CFrag operations, but these two, overall, slightly increase the round
response latency with respect to the Request Access and Grant Access operations. Indeed,
here too, we can see the effect of the blockchain execution in delaying the response time.

Figure 11. System throughput considering a round as a single operation, i.e., aggregating the results
for each single operation, while varying t and k.

Threshold Number

Figure 12 shows the results when increasing the t value and the number of owners k
for each i-th round, i.e., it shows the performances for each subsequent round instead of
aggregating all rounds through their mean. In this case, the results shown confirm that the
increase in t does not influence much to the overall response delay. However, this temporal
point of view shows the accumulation of delay in the response time when increasing k. We
can see, for instance, that up to k = 30 each i-th round has more or less the same average
latency. When increasing k, however, the latency of rounds in the middle spikes upwards,
due to the accumulation of operations to perform, and then returns to a relatively normal
value in the last rounds (i.e., 9-th and 10-th).

Figure 12. Average response latency when increasing the threshold t value and the number of owners
k for each i-th round.



Sensors 2022, 22, 6260 26 of 31

6.2.3. Discussion

Limited to the scenario we tested, it seems that a number of data owners around 30
and 40 induces the best ratio of completed rounds to response latency time. With this
workload, the system can fulfill around 0.17 rounds per seconds. Overall, we can observe
how the writing in the blockchain greatly impacts the whole system performance and that
the number of requests related only to the TPRE operations can still scale to a larger number
of data owners.

In reality, the interaction of owners with the system may be much slower, making the
overall round latency increase but, at the same time, diminishing the system workload. We
can imagine that the NewRequest event triggered by the requestAccess() method is shown to
the data owner through a smartphone notification, thus requiring seconds, if not hours,
to be read and accepted. In this context, the use of semantic web-based policy languages to
express rich rules for consent and data requests could be useful in automating (and thus
speeding up) this process [59]. This is left as future work.

Nonetheless, we argue that the results show the viability of our approach, especially
having the possibility to tweak the authorization blockchain parameters and node hardware
configuration. Moreover, the good response of the TPRE implementation gives reason to
believe that, by moving this module to another blockchain that supports smart contracts
but provides better latency, even improved outcomes can be achieved.

6.3. Smart Contract Gas Usage

Our focus is now on the execution of the smart contracts that we described in the use
case Section 5, with regards to steps 1 to 4. In Ethereum, the gas is a unit that measures the
amount of computational effort needed to execute operations. Thus, the higher the gas
usage for a method, the more intense the computation of a blockchain node to execute the
method’s instructions. In Table 4, we provide the execution cost for the main methods in
terms of gas usage.

Table 4. k-DaO smart contract methods’ gas usage. Results are indicative and can change on the basis
of the input data.

Smart Contract Method Gas Usage

DataOwnerContract

grantAccess() 96,436

requestAccess() 142,648

grantAccessRequest() 77,706

revokeAccess() 30,126

AggregatorContract
requestAccessToData() 698,854

createkDaO() 447,958

kDaO

submitProposal() 133,501

submitRefundProposal() 362,489

submitSuggestion() 114,523

vote() 188,539

changeVote() 153,587

executeRefundProposal() 82,672

kDaOToken transfer() 52,311

TokenTimelockProxy lockTokens() 246,525

TokenTimelockUpgreadeable release() 45,808

We start from the analysis of the gas usage of the trans f er() method of the kDaOToken
contract. This acts as a reference point, as this method is one of the most invoked ones



Sensors 2022, 22, 6260 27 of 31

in the Ethereum public permissionless blockchain, because it consists of the standard
implementation of the ERC20 token. The associated gas usage of ∼52k can be relatively
considered cheap, and it helps to give a measure of comparison. The DataOwnerContract’s
methods can, then, be considered relatively cheap in comparison. This result is needed
because these methods are executed many times. The method requestAccess() is the one with
the highest gas usage because it takes as input several parameters, i.e., IOTA announcement
link, variable list of Ethereum accounts, a string for the request.

The AggregatorContract’s method requestAccessToData() has an high gas usage, i.e., ∼700k,
because it interacts with several other contracts on-chain. This usage value represents a request
made to other two smart contracts. In general, the gas usage in this case increases linearly
with the number of contracts to make the request to. The createkDaO() method is cheaper
because it only reads from those smart contracts. However, the gas usage is high because it
deploys a new contract, i.e., the kDaO one, using the proxy pattern. By using the EIP-1167
Minimal Proxy pattern [72] instead of a standard factory pattern, this method only uses
∼447k gas units instead of ∼2840k.

In the kDaO contract, the submitProposal() method is used to submit a generic proposal
and uses less gas than the submitRefundProposal() because the latter executes two more op-
erations, i.e., submits two proposals “refund” and “not-refund”. The vote() and changeVote()
methods have slightly higher gas usages because of the check of the locked tokens. The
lockTokens() method in the TokenTimelockProxy contract for locking a certain amount of
kDaOTokens is expensive in terms of gas usage, i.e., ∼256k, because it also deploys a new
contract using the proxy pattern. However, also in this case, there are savings compared
with the factory pattern, that requires ∼1037k gas units.

Generally speaking, the methods that are executed the most do not appear to be a
concern for their execution in a private permissioned blockchain environment.

7. Conclusions

In this paper, we have described the architecture of a decentralized personal data
marketplace and provided an implementation based on Distributed Ledger Technologies
(DLTs), Decentralized File Storages (DFS) and smart contracts. Data are stored in Personal
Data Stores (PDS) and then accessed through an authorization blockchain using a Threshold
Proxy Re-Encryption (TPRE) schema. Moreover, we have provided a Layer-2 solution
based on the use of an hypercube-structured Distributed Hash Table (DHT), with the aim
of facilitating the retrieval of large amounts of data using specific keywords. We focused
specifically on retrieving data stored in IOTA stream channel messages. We discussed a use
case for participation in the creation of citizen-generated data with the aim of describing our
implementation and of validating it against a real-world scenario. The proposal validation
then continued with a performance evaluation divided in three steps: (i) hypercube DHT
simulation, (ii) distributed authorization testing and (iii) smart contract gas usage.

The solution we provided for the hypercube DHT consists of a decentralized system
that provides an efficient routing mechanism based on keyword sets. The simulation
analysis shows that searching for an object with an exact keyword set requires on average
log(n)

2 hops, where n is the number of logical nodes of the hypercube. This solution
presents an efficient trade-off between memory space and response time, thus making a
first contribution towards the creation of a system that allows complex queries on DLT.

The distributed authorization is implemented using the GoQuorum permissioned
blockchain, a set of smart contracts for implementing data owner’s policies and the TPRE
cryptographic schema for distributing the keys that decrypt data. The results show that
writing on the blockchain represents a bottleneck, but that the citizen-generated data
use case implementation is viable. Moreover, the results beyond the ledger writing part
gives good reason to believe that a similar approach can be easily implemented in more
performing blockchains with much better results.



Sensors 2022, 22, 6260 28 of 31

Smart contracts that implement access control and DAO operations have adequate
gas usage. The use of patterns such as the Minimal Proxy pattern helps to reduce the gas
usage of some contract methods.

Finally, for future work, we are preparing the deployment of such a decentralized mar-
ketplace in larger networks, formed by more performing nodes. This will allow us to better
test the influence of the network transmission and the system scalability. Moreover, we will
focus on the integration of richer policy expression languages for managing personal data
access control, adding a layer of policy declaration and reasoning on top of smart contracts.

Author Contributions: Conceptualization, M.Z. and S.F.; methodology, M.Z. and S.F.; software, M.Z.;
validation, M.Z. and S.F.; formal analysis, M.Z.; investigation, M.Z., S.F. and V.R.-D.; resources, M.Z.
and V.R.-D.; data curation, M.Z.; writing—original draft preparation, M.Z.; writing—review and edit-
ing, M.Z., S.F. and V.R.-D.; visualization, M.Z.; supervision, S.F. and V.R.-D.; project administration,
S.F. and V.R.-D.; funding acquisition, M.Z., S.F. and V.R.-D. All authors have read and agreed to the
published version of the manuscript.

Funding: This work has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie International Training Network European
Joint Doctorate grant agreement No. 814177 Law, Science and Technology Joint Doctorate—Rights of
the Internet of Everything.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The complete dataset and the reference software referenced in the
performance evaluation are stored in [77,82,84], following the FAIR data principles for access and
reuse of models [86].

Acknowledgments: An early version of this work appeared in [87]. This paper is an extensively
revised and extended version where more than 50% is new material. We are indebted to Gabriele
D’Angelo for his support in the research conducted for this work and to Cesare Giansante for his
contribution on a preliminary implementation of the hypercube DHT simulation.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

API Application Programming Interface
ACL Access Control List
CFrag Capsule Fragment
CID Content Identifier
DAG Directed Acyclic Graph
DAO Decentralized Autonomous Organization
DFS Decentralized File Storage
DHT Distributed Hash Table
DLT Distributed Ledger Technology
GDPR General Data Protection Regulation
IBFT Istanbul Byzantine Fault-Tolerant
IPFS InterPlanetary File System
KFrag Key Fragment
P2P Peer-to-Peer
PIMS Personal Information Management System
PDS Personal Data Store
PRE Proxy Re-Encryption
SSI Self-Sovereign Identity
TPRE Threshold Proxy Re-Encryption
UML Universal Modeling Language
W3C World Wide Web Consortium



Sensors 2022, 22, 6260 29 of 31

References
1. Cadwalladr, C.; Graham-Harrison, E. Revealed: 50 million Facebook profiles harvested for Cambridge Analytica in major data

breach. The Guardian 2018, 17, 22.
2. Patel, R. Participatory Data Stewardship; Technical Report; Ada Lovelace Institute: London, UK, 2021.
3. Prandi, C.; Mirri, S.; Ferretti, S.; Salomoni, P. On the need of trustworthy sensing and crowdsourcing for urban accessibility in

smart city. ACM Trans. Internet Technol. 2017, 18, 1–21.
4. Floridi, L. The fight for digital sovereignty: What it is, and why it matters, especially for the EU. Philos. Technol. 2020, 33, 369–378.
5. Ramachandran, G.S.; Radhakrishnan, R.; Krishnamachari, B. Towards a Decentralized Data Marketplace for Smart Cities. In

Proceedings of the 2018 IEEE International Smart Cities Conference (ISC2), Kansas City, MO, USA, 16–19 September 2018; pp. 1–8.
https://doi.org/10.1109/ISC2.2018.8656952.

6. Zichichi, M.; Ferretti, S.; D’Angelo, G. A Framework based on Distributed Ledger Technologies for Data Management and
Services in Intelligent Transportation Systems. IEEE Access 2020, 8, 100384–100402.

7. High-Level Expert Group on Business-to-Government Data Sharing. Towards a European Strategy on Business-to-Government Data
Sharing for the Public Interest; Technical Report; European Commission: Brussels, Belgium, 2021.

8. Janssen, H.; Singh, J. Personal Information Management Systems. Internet Policy Rev. 2022, 11, 1–6.
9. Zichichi, M.; Ferretti, S.; D’Angelo, G.; Rodríguez-Doncel, V. Data Governance through a Multi-DLT Architecture in View of the

GDPR. Clust. Comput. 2022, 1–32. https://doi.org/10.1007/s10586-022-03691-3
10. Yan, Z.; Gan, G.; Riad, K. BC-PDS: Protecting privacy and self-sovereignty through BlockChains for OpenPDS. In Proceedings of

the 2017 IEEE Symposium on Service-Oriented System Engineering (SOSE), San Francisco, CA, USA, 6–9 April 2017; pp. 138–144.
11. Crabtree, A.; Lodge, T.; Colley, J.; Greenhalgh, C.; Glover, K.; Haddadi, H.; Amar, Y.; Mortier, R.; Li, Q.; Moore, J.; et al.

Building accountability into the Internet of Things: The IoT Databox model. J. Reliab. Intell. Environ. 2018, 4, 39–55.
https://doi.org/10.1007/s40860-018-0054-5.

12. Sambra, A.V.; Mansour, E.; Hawke, S.; Zereba, M.; Greco, N.; Ghanem, A.; Zagidulin, D.; Aboulnaga, A.; Berners-Lee, T. Solid: A
Platform for Decentralized Social Applications Based on Linked Data; Technical Report; MIT CSAIL & Qatar Computing Research
Institute: Cambridge, MA, USA, 2016.

13. European Commission. A European Strategy for Data; European Union: Brussels, Belgium, 2020.
14. European Commission. European Data Governance (Data Governance Act); European Union: Brussels, Belgium, 2020.
15. Council of European Union. Regulation (eu) 2016/679—Directive 95/46; European Union: Brussels, Belgium, 2016.
16. Kondova, G.; Erbguth, J. Self-sovereign identity on public blockchains and the GDPR. In Proceedings of the 35th Annual ACM

Symposium on Applied Computing, Brno, Czech Republic, 30 March–3 April 2020; pp. 342–345.
17. Park, J.S.; Youn, T.Y.; Kim, H.B.; Rhee, K.H.; Shin, S.U. Smart contract-based review system for an IoT data marketplace. Sensors

2018, 18, 3577.
18. Özyilmaz, K.R.; Doğan, M.; Yurdakul, A. IDMoB: IoT Data Marketplace on Blockchain. In Proceedings of the Crypto Valley

Conference on Blockchain Technology (CVCBT), Zug, Switzerland, 20–22 June 2018.
19. Ramsundar, B.; Chen, R.; Vasudev, A.; Robbins, R.; Gorokh, A. Tokenized Data Markets. arXiv 2018, arXiv:1806.00139.
20. Benet, J. Ipfs-content addressed, versioned, p2p file system. arXiv 2014, arXiv:1407.3561.
21. Popov, S. The Tangle. 2016. Available online: https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637

ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf (accessed on 24 May 2022).
22. Buterin, V. Ethereum White Paper. 2013. Available online: https://ethereum.org/en/whitepaper/ (accessed on 24 May 2022).
23. Nunez, D. Umbral: A Threshold Proxy Re-Encryption Scheme; University of Malaga: Malaga, Spain, 2018.
24. Joung, Y.J.; Yang, L.W.; Fang, C.T. Keyword search in dht-based peer-to-peer networks. IEEE J. Sel. Areas Commun. 2007, 25, 46–61.
25. Kubach, M.; Sellung, R. On the market for self-sovereign identity: Structure and stakeholders. In Open Identity Summit 2021;

Gesellschaft für Informatik: Bonn, Germany, 2021.
26. Zichichi, M.; Contu, M.; Ferretti, S.; D’Angelo, G. LikeStarter: A Smart-contract based Social DAO for Crowdfunding. In

Proceedings of the INFOCOM 2019—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Paris,
France, 29 April–2 May 2019.

27. Ratnasamy, S.; Francis, P.; Handley, M.; Karp, R.; Shenker, S. A scalable content-addressable network. In Proceedings of the 2001
Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, San Diego, CA, USA,
27–31 August 2001; pp. 161–172.

28. Ferretti, S.; Ghini, V.; Panzieri, F.; Turrini, E. Seamless support of multimedia distributed applications through a cloud. In
Proceedings of the 2010 IEEE 3rd International Conference on Cloud Computing, Miami, FL, USA, 5–10 July 2010; pp. 548–549.

29. Becker, M.; Bodó, B. Trust in blockchain-based systems. Internet Policy Rev. 2021, 10, 1–10.
30. Pocher, N.; Zichichi, M. Towards CBDC-based Machine-to-Machine Payments in Consumer IoT. In Proceedings of the 37th

ACM/SIGAPP Symposium on Applied Computing (SAC), Virtual, 25–29 April 2022; pp. 1–8.
31. Bez, M.; Fornari, G.; Vardanega, T. The scalability challenge of ethereum: An initial quantitative analysis. In Proceedings of the

2019 IEEE International Conference on Service-Oriented System Engineering (SOSE), San Francisco, CA, USA, 4–9 April 2019;
pp. 167–176.

32. The Graph Protocol. 2020. Available online: https://thegraph.com/en/ (accessed on 24 May 2022).
33. De Filippi, P.; Wray, C.; Sileno, G. Smart contracts. Internet Policy Rev. 2021, 10. https://doi.org/10.14763/2021.2.1549.

https://doi.org/10.1109/ISC2.2018.8656952
https://doi.org/10.1007/s40860-018-0054-5
https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf
https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf
https://ethereum.org/en/whitepaper/
https://thegraph.com/en/


Sensors 2022, 22, 6260 30 of 31

34. Ferretti, S.; D’Angelo, G. On the ethereum blockchain structure: A complex networks theory perspective. Concurr. Comput. Pract.
Exp. 2020, 32, e5493.

35. Aiello, M.; Cambiaso, E.; Canonico, R.; Maccari, L.; Mellia, M.; Pescapè, A.; Vaccari, I. IPPO: A Privacy-Aware Architecture for
Decentralized Data-sharing. arXiv 2020, arXiv:2001.06420.

36. Yu, L.; Zichichi, M.; Markovich, R.; Najjar, A. Intelligent Human-input-based Blockchain Oracle (IHiBO). In Proceedings of the
14th International Conference on Agents and Artificial Intelligence (ICAART), Online, 3–5 February 2022; pp. 1–12.

37. D’Angelo, G.; Ferretti, S.; Marzolla, M. A blockchain-based flight data recorder for cloud accountability. In Proceedings of the 1st
Workshop on Cryptocurrencies and Blockchains for Distributed Systems, Munich, Germany, 15 June 2018; pp. 93–98.

38. Radix Knowledge Base. 2019. Available online: https://learn.radixdlt.com/ (accessed on 24 May 2022).
39. Benčić, F.M.; Žarko, I.P. Distributed ledger technology: Blockchain compared to directed acyclic graph. In Proceedings of the 2018

IEEE 38th International Conference on Distributed Computing Systems (ICDCS), Vienna, Austria, 2–6 July 2018; pp. 1569–1570.
40. Brogan, J.; Baskaran, I.; Ramachandran, N. Authenticating Health Activity Data Using Distributed Ledger Technologies. Comput.

Struct. Biotechnol. J. 2018, 16, 257–266.
41. IOTA Streams Specification. 2022. Available online: https://github.com/iotaledger/streams/blob/develop/specification/

Streams_Specification_1_0A.pdf (accessed on 24 May 2022).
42. Ateniese, G.; Fu, K.; Green, M.; Hohenberger, S. Improved proxy re-encryption schemes with applications to secure distributed

storage. ACM Trans. Inf. Syst. Secur. 2006, 9, 1–30.
43. de la Vega, F.; Soriano, J.; Jimenez, M.; Lizcano, D. A peer-to-peer architecture for distributed data monetization in fog computing

scenarios. Wirel. Commun. Mob. Comput. 2018, 2018, 5758741.
44. Zhu, L.; Xiao, C.; Gong, X. Keyword Search in Decentralized Storage Systems. Electronics 2020, 9, 2041.
45. Onik, M.M.H.; Kim, C.S.; Lee, N.Y.; Yang, J. Privacy-aware blockchain for personal data sharing and tracking. Open Comput. Sci.

2019, 9, 80–91.
46. Zichichi, M.; Contu, M.; Ferretti, S.; Rodríguez-Doncel, V. Ensuring Personal Data Anonymity in Data Marketplaces through

Sensing-as-a-Service and Distributed Ledger. In Proceedings of the 3rd Distributed Ledger Technology Workshop, Co-Located
with ITASEC 2020, Ancona, Italy, 4 February 2020.

47. Lopez, D.; Farooq, B. A multi-layered blockchain framework for smart mobility data-markets. Transp. Res. Part C Emerg. Technol.
2020, 111, 588–615.

48. Zyskind, G.; Nathan, O. Decentralizing privacy: Using blockchain to protect personal data. In Proceedings of the 2015 IEEE
Security and Privacy Workshops, San Jose, CA, USA, 21–22 May 2015; pp. 180–184.

49. Cruz, J.P.; Kaji, Y.; Yanai, N. RBAC-SC: Role-based access control using smart contract. IEEE Access 2018, 6, 12240–12251.
50. Maesa, D.D.F.; Mori, P.; Ricci, L. Blockchain based access control. In IFIP International Conference on Distributed Applications and

Interoperable Systems; Springer: Cham, Switerland, 2017; pp. 206–220.
51. Zhang, Y.; He, D.; Choo, K.K.R. BaDS: Blockchain-based architecture for data sharing with ABS and CP-ABE in IoT. Wirel.

Commun. Mob. Comput. 2018, 2018, 2783658.
52. Wang, S.; Zhang, Y.; Zhang, Y. A blockchain-based framework for data sharing with fine-grained access control in decentralized

storage systems. IEEE Access 2018, 6, 38437–38450.
53. Xu, H.; He, Q.; Li, X.; Jiang, B.; Qin, K. BDSS-FA: A Blockchain-Based Data Security Sharing Platform With Fine-Grained Access

Control. IEEE Access 2020, 8, 87552–87561. https://doi.org/10.1109/access.2020.2992649.
54. Jiang, P.; Guo, F.; Liang, K.; Lai, J.; Wen, Q. Searchain: Blockchain-based private keyword search in decentralized storage. Future

Gener. Comput. Syst. 2020, 107, 781–792. https://doi.org/10.1016/j.future.2017.08.036.
55. IPFS Community. Search Engine for the InterPlanetary File System. 2021. Available online: https://github.com/ipfs-search/

ipfs-search (accessed on 24 May 2022).
56. Khudhur, N.; Fujita, S. Siva-The IPFS Search Engine. In Proceedings of the 2019 Seventh International Symposium on Computing

and Networking (CANDAR), Nagasaki, Japan, 25–28 November 2019; pp. 150–156.
57. Serena, L.; Zichichi, M.; D’Angelo, G.; Ferretti, S. Simulation of Hybrid Edge Computing Architectures. In Proceedings of the

2021 IEEE/ACM 25th International Symposium on Distributed Simulation and Real Time Applications (DS-RT), Valencia, Spain,
27–29 September 2021; pp. 1–8.

58. Chaudhry, A.; Crowcroft, J.; Howard, H.; Madhavapeddy, A.; Mortier, R.; Haddadi, H.; McAuley, D. Personal data: Thinking
inside the box. In Proceedings of the Fifth Decennial Aarhus Conference on Critical Alternatives, Aarhus, Denmark, 17–21 August
2015; pp. 29–32.

59. Esteves, B.; Pandit, H.J.; Rodríguez-Doncel, V. ODRL Profile for Expressing Consent through Granular Access Control Policies in
Solid. In Proceedings of the 2021 IEEE European Symposium on Security and Privacy Workshops (EuroS PW), Vienna, Austria,
6–10 September 2021; pp. 298–306. https://doi.org/10.1109/EuroSPW54576.2021.00038.

60. Davari, M.; Bertino, E. Access control model extensions to support data privacy protection based on GDPR. In Proceedings of the
2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 4017–4024.

61. European Union Agency for Cybersecurity. Data Pseudonymisation: Advanced Techniques & Use Cases; Technical Report; European
Union Agency for Cybersecurity: Athens, Greece, 2021.

https://learn.radixdlt.com/
https://github.com/iotaledger/streams/blob/develop/specification/Streams_Specification_1_0A.pdf
https://github.com/iotaledger/streams/blob/develop/specification/Streams_Specification_1_0A.pdf
https://doi.org/10.1109/access.2020.2992649
https://doi.org/https://doi.org/10.1016/j.future.2017.08.036
https://github.com/ipfs-search/ipfs-search
https://github.com/ipfs-search/ipfs-search
https://doi.org/10.1109/EuroSPW54576.2021.00038


Sensors 2022, 22, 6260 31 of 31

62. Herranz, J.; Hofheinz, D.; Kiltz, E. KEM/DEM: Necessary and Sufficient Conditions for Secure Hybrid Encryption. IACR
Cryptology ePrint Archive. 2006. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.64.9369&rep=
rep1&type=pdf (accessed on 24 May 2022).

63. Gudgeon, L.; Moreno-Sanchez, P.; Roos, S.; McCorry, P.; Gervais, A. SoK: Layer-two blockchain protocols. In International
Conference on Financial Cryptography and Data Security; Springer: Cham, Switerland, 2020.

64. Yu, L.; Zichichi, M.; Markovich, R.; Najjar, A. Enhancing Trust in Trust Services: Towards an Intelligent Human-input-based
Blockchain Oracle (IHiBO). In Proceedings of the 55th Hawaii International Conference on System Sciences (HICSS), Maui, HI,
USA, 4–7 January 2022; pp. 1–10.

65. Corcho, O.; Jiménez, J.; Morote, C.; Simperl, E. Data.europa.eu and Citizen-Generated Data. 2022. Available online: https:
//data.europa.eu/sites/default/files/report/data.europa.eu_Report_Citizen-generateddataondata_europa_eu.pdf (accessed on
24 May 2022).

66. Samarati, P.; Sweeney, L. Protecting Privacy when Disclosing Information: K-Anonymity and Its Enforcement through Generalization and
Suppression; Technical Report; SRI International: Menlo Park, CA, USA, 1998.

67. Campbell, M.J.; Dennison, P.E.; Butler, B.W.; Page, W.G. Using crowdsourced fitness tracker data to model the relationship
between slope and travel rates. Appl. Geogr. 2019, 106, 93–107.

68. Mazzoni, M.; Corradi, A.; Di Nicola, V. Performance evaluation of permissioned blockchains for financial applications: The
ConsenSys Quorum case study. Blockchain Res. Appl. 2022, 3, 100026.

69. Dwork, C. Differential privacy. In Encyclopedia of Cryptography and Security; Springer: New York, NY, USA, 2011; pp. 338–340.
70. Article 29 Working Party. 2014. Available online: https://ec.europa.eu/justice/article-29/documentation/opinion-

recommendation/files/2014/wp216_en.pdf (accessed on 24 May 2022).
71. See, L.; Mooney, P.; Foody, G.; Bastin, L.; Comber, A.; Estima, J.; Fritz, S.; Kerle, N.; Jiang, B.; Laakso, M.; et al. Crowdsourcing,

citizen science or volunteered geographic information? The current state of crowdsourced geographic information. ISPRS Int. J.
Geo-Inf. 2016, 5, 55.

72. Murray, P.; Nate Welch, J.M. EIP-1167: Minimal Proxy Contract. 2018. Available online: https://eips.ethereum.org/EIPS/eip-1167
(accessed on 24 May 2022).

73. Fabian Vogelsteller, V.B. EIP-20: ERC-20 Token Standard. 2015. Available online: https://eips.ethereum.org/EIPS/eip-20
(accessed on 24 May 2022).

74. Zichichi, M.; Ferretti, S.; D’Angelo, G. Are Distributed Ledger Technologies Ready for Intelligent Transportation Systems? In
Proceedings of the 3rd Workshop on Cryptocurrencies and Blockchains for Distributed Systems (CryBlock 2020), London, UK,
25 September 2020; pp. 1–6.

75. Zichichi, M.; Ferretti, S.; D’Angelo, G. On the Efficiency of Decentralized File Storage for Personal Information Management
Systems. In Proceedings of the 2020 IEEE Symposium on Computers and Communications (ISCC), Rennes, France, 7–10 July
2020; pp. 1–6.

76. AnaNSi-Research. Hypercube. 2022. Available online: https://github.com/AnaNSi-research/hypfs (accessed on 24 May 2022).
77. Zichichi, M. miker83z/umbral-rs. Software. 2022. https://doi.org/10.5281/zenodo.6548260.
78. Zichichi, M. miker83z/testingIPFS: IPFS and SIA User Client Application Tests. Software. 2021. https://doi.org/10.5281/zenodo.4572578.
79. AnaNSi-Research. IOTA. 2022. Available online: https://github.com/AnaNSi-research/testingIOTA (accessed on 24 May 2022).
80. Montresor, A.; Jelasity, M. PeerSim: A scalable P2P simulator. In Proceedings of the 2009 IEEE Ninth International Conference on

Peer-to-Peer Computing, Seattle, WA, USA, 9–11 September 2009; pp. 99–100.
81. D’Angelo, G.; Ferretti, S. LUNES: Agent-based simulation of P2P systems. In Proceedings of the 2011 International Conference

on High Performance Computing & Simulation, Istanbul, Turkey, 4–8 July 2011; pp. 593–599.
82. Giansante, C.; Zichichi, M. miker83z/Hypercube-DHT-Simulation. Software. 2022. https://doi.org/10.5281/zenodo.6548266.
83. Blockchain Explorer. 2020. Available online: www.blockchain.com/explorer (accessed on 24 May 2022).
84. Zichichi, M. miker83z/k-DaO. Software. 2022. https://doi.org/10.5281/zenodo.6548262.
85. Serena, L.; Zichichi, M.; D’Angelo, G.; Ferretti, S. Simulation of Dissemination Strategies on Temporal Networks. In Proceedings

of the 2021 Annual Modeling and Simulation Conference (ANNSIM), Fairfax, VA, USA, 19–22 July 2021; pp. 1–12.
86. Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.W.; da Silva Santos,

L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 1–9.
87. Zichichi, M.; Serena, L.; Ferretti, S.; D’Angelo, G. Towards Decentralized Complex Queries over Distributed Ledgers: A Data

Marketplace Use-case. In Proceedings of the 30th IEEE International Conference on Computer Communications and Networks
(ICCCN), Athens, Greece, 19–22 July 2021; pp. 1–6.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.64.9369&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.64.9369&rep=rep1&type=pdf
https://data.europa.eu/sites/default/files/report/data.europa.eu_Report_Citizen-generateddataondata_europa_eu.pdf
https://data.europa.eu/sites/default/files/report/data.europa.eu_Report_Citizen-generateddataondata_europa_eu.pdf
https://ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2014/wp216_en.pdf
https://ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2014/wp216_en.pdf
https://eips.ethereum.org/EIPS/eip-1167
https://eips.ethereum.org/EIPS/eip-20
https://github.com/AnaNSi-research/hypfs
https://doi.org/10.5281/zenodo.6548260
https://doi.org/10.5281/zenodo.4572578
https://github.com/AnaNSi-research/testingIOTA
https://doi.org/10.5281/zenodo.6548266
www.blockchain.com/explorer
https://doi.org/10.5281/zenodo.6548262

	Introduction
	Background
	Distributed Hash Table (DHT)
	Decentralized File Storage (DFS)
	Distributed Ledger Technology (DLT)
	Smart Contract and Decentralized Autonomous Organization (DAO)
	IOTA and Streams
	Proxy Re-Encryption (PRE) and Cryptographic Threshold Schemes

	Related Works
	Decentralized Data Marketplace
	Decentralized Access Control
	Decentralized Data Search
	Decentralized Personal Data Management

	Decentralized Personal Data Marketplace Architecture
	DFS-Based Personal Data Store
	Smart Contract-Based Distributed Access Control
	Access Mechanism

	DLT Indexing and Validation
	Hypercube-Structured DHT
	Keyword-Based Complex Queries
	Multiple Keywords Search
	The Query Routing Mechanism


	k-DaO Use Case: Participatory Data Stewardship and Citizen-Generated Data Creation
	Anonymizing Data by Aggregation
	Step Zero: Search Data on the Decentralized Marketplace
	Smart Contracts Implementing the Distributed Access Control
	Smart Contracts Implementing the k-DaO
	Anonymized Aggregated Dataset

	Performance Evaluation
	Hypercube DHT Simulation
	Tests Setup
	Results
	Discussion

	Authorization Blockchain Performances
	Test Setup
	Results
	Discussion

	Smart Contract Gas Usage

	Conclusions
	References

